Breast cancer amplified sequence 2 (BCAS2) was reported previously as a transcriptional coactivator of estrogen receptor. Here, we report that BCAS2 directly interacts with p53 to reduce p53 transcriptional activity by mildly but consistently decreasing p53 protein in the absence of DNA damage. However, in the presence of DNA damage, BCAS2 prominently reduces p53 protein and provides protection against chemotherapeutic agent such as doxorubicin. Deprivation of BCAS2 induces apoptosis in p53 wild-type cells but causes G 2 -M arrest in p53-null or p53 mutant cells. There are at least two apoptosis mechanisms induced by silencing BCAS2 in wildtype p53-containing cells. Firstly, it increases p53 retention in nucleus that triggers the expression of apoptosis-related genes. Secondly, it increases p53 transcriptional activity by raising p53 phosphorylation at Ser 46 and decreases p53 protein degradation by reducing p53 phosphorylation at Ser 315 . We show for the first time that BCAS2, a small nuclear protein (26 kDa), is a novel negative regulator of p53 and hence a potential molecular target for cancer therapy. [Cancer Res 2009;69(23):8877-85]
B-cell translocation gene 3 (BTG3) is a member of the antiproliferative BTG gene family and is a downstream target of p53. Here, we show that senescence triggered by BTG3 depletion was accompanied by a secretome enriched with cytokines, growth factors, and matrix-remodeling enzymes, which could promote angiogenesis and cell scattering in vitro. We present evidence that at least part of these activities can be explained by elevated HIF-1α activity. Mechanistically, the BTG3 C-terminal domain competes with the coactivator p300 for binding the HIF-1α transactivation domain. The angiogenic promoting effect of BTG3 knockdown was largely diminished upon co-depletion of HIF-1α, indicating that HIF-1α is a major downstream target of BTG3 in the control of angiogenesis. In vivo, ectopic expression of BTG3 suppresses angiogenesis in xenograft tumors; and syngenic tumor growth and metastasis were enhanced in Btg3-null mice. Moreover, analysis of clinical datasets revealed that a higher BTG3/VEGFA expression ratio correlates with improved patient survival in a number of cancer types. Taken together, our findings highlight the non-autonomous regulation of tumor microenvironment by BTG3 while suppressing tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.