Temperature sensors with a communication capability can help monitor and report temperature values to a control station, which enables dynamic and real-time evacuation paths in fire emergencies. As compared to traditional approaches that identify a one-shot fire evacuation path, in this paper, we develop an intelligent algorithm that can identify time-aware and temperature-aware fire evacuation paths by considering temperature changes at different time slots in multi-story and multi-exit buildings. We first propose a method that can map three-dimensional multi-story multi-exit buildings into a two-dimensional graph. Then, a mathematical optimization model is proposed to capture this time-aware and temperature-aware evacuation path problem in multi-story multi-exit buildings. Six fire evacuation algorithms (BFS, SP, DBFS, TABFS, TASP and TADBFS) are proposed to identify the efficient evacuation path. The first three algorithms that do not address human temperature limit constraints can be used by rescue robots or firemen with fire-proof suits. The last three algorithms that address human temperature limit constraints can be used by evacuees in terms of total time slots and total temperature on the evacuation path. In the computational experiments, the open space building and the Taipei 101 Shopping Mall are all tested to verify the solution quality of these six algorithms. From the computational results, TABFS, TASP and TADBF identify almost the same evacuation path in open space building and the Taipei 101 Shopping Mall. BFS, SP DBFS can locate marginally better results in terms of evacuation time and total temperature on the evacuation path. When considering evacuating a group of evacuees, the computational time of the evacuation algorithm is very important in a time-limited evacuation process. Considering the extreme case of seven fires in eight emergency exits in the Taipei 101 Shopping Mall, the golden window for evacuation is 15 time slots. Only TABFS and TADBFS are applicable to evacuate 1200 people in the Taipei 101 Shopping Mall when one time slot is setting as one minute. The computational results show that the capacity limit for the Taipei 101 Shopping Mall is 800 people in the extreme case of seven fires. In this case, when the number of people in the building is less than 700, TADBFS should be adopted. When the number of people in the building is greater than 700, TABFS can evacuate more people than TADBFS. Besides identifying an efficient evacuation path, another significant contribution of this paper is to identify the best sensor density deployment at large buildings like the Taipei 101 Shopping Mall in considering the fire evacuation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.