Lightning Fast is a sensitive fluorescence-based stain for detecting proteins in onedimensional and two-dimensional polyacrylamide electrophoresis gels. It contains the fluorophore epicocconone from the fungus Epicoccum nigrum that interacts noncovalently with sodium dodecyl sulfate and protein. Stained proteins can be excited optimally by near-ultraviolet light of about 395 nm or with visible light of about 520 nm. The stain can be excited using a range of sources used in image analysis systems including UVA (ca. 365 nm) and UVB (ca. 302 nm) transilluminators; Xenon-arc lamps; 488 nm and 457 nm Argon-ion lasers; 473 nm and 532 nm neodymium: yttrium aluminum garnet (Nd:YAG) solid-state lasers; 543 nm helium-neon lasers, and emerging violet, blue and green diode lasers. Maximum fluorescence emission of the dye is at approximately 610 nm. The limit of detection in one-dimensional gels stained with Lightning Fast protein gel stain is less than 100 pg of protein, rivaling the current limits of matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Lightning Fast was found to be considerably more sensitive than SYPRO Ruby, SYPRO Orange, silver and Coomassie Brilliant Blue G-250 in matched experiments. Staining takes as little as 3.5 h and stained proteins displayed quantitative linearity over more than four orders of magnitude, thereby allowing visualization of entire proteomes. Lightning Fast protein gel staining is compatible with subsequent peptide mass fingerprinting using MALDI-MS and Edman-based sequencing chemistry.
Knowledge of gene expression and cellular responses in microorganisms is derived from analyses of populations consisting of millions of cells. Analytical techniques that provide data as population averages fail to inform of culture heterogeneity. Flow cytometry and fluorescence techniques were used to provide information on the heterogeneity of stress‐responsive gene expression and stress tolerance in individual cells within populations. A sequence of DNA encoding the heat shock and stress response elements of the Saccharomyces cerevisiae HSP104 gene was used to express enhanced green fluorescent protein (EGFP). When integrated into the genome of yeast strain W303‐1A, intrinsic expression of EGFP increased about twofold as cells progressed from growth on glucose to ethanol utilization in aerobic batch cultures. Staining of cells with orange/red fluorescent propidium iodide (PI), which only enters cells that have compromised membrane integrity, revealed that the population became more tolerant to 52°C heat stress as it progressed from growth on glucose and through the ethanol utilization phase of aerobic batch culture. Exposure of cultures growing on glucose to a mild heat shock (shift from 25°C to 37°C) resulted in significantly increased expression of EGFP in the population. However, there was heterogeneity in the intensity of fluorescence of individual cells from heat‐shocked cultures, indicating variability in the strength of stress response in the clonal population. Detailed analysis of the heterogeneity showed a clear positive trend between intensity of stress response and individual cell resistance, measured in terms of PI exclusion, to heat stress at 52°C. Further experiments indicated that, although the mean gene expression by a population is influenced by the genetic background, the heterogeneity among individual cells in clonal populations is largely physiologically based.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.