BackgroundResveratrol is a natural compound suggested to have beneficial health effects. However, people are consuming resveratrol for this reason without having the adequate scientific evidence for its effects in humans. Therefore, scientific valid recommendations concerning the human intake of resveratrol based on available published scientific data are necessary. Such recommendations were formulated after the Resveratrol 2010 conference, held in September 2010 in Helsingør, Denmark.MethodologyLiterature search in databases as PubMed and ISI Web of Science in combination with manual search was used to answer the following five questions: 1Can resveratrol be recommended in the prevention or treatment of human diseases?; 2Are there observed “side effects” caused by the intake of resveratrol in humans?; 3What is the relevant dose of resveratrol?; 4What valid data are available regarding an effect in various species of experimental animals?; 5Which relevant (overall) mechanisms of action of resveratrol have been documented?Conclusions/SignificanceThe overall conclusion is that the published evidence is not sufficiently strong to justify a recommendation for the administration of resveratrol to humans, beyond the dose which can be obtained from dietary sources. On the other hand, animal data are promising in prevention of various cancer types, coronary heart diseases and diabetes which strongly indicate the need for human clinical trials. Finally, we suggest directions for future research in resveratrol regarding its mechanism of action and its safety and toxicology in human subjects.
Activated by thyroid hormone, the MAPK (ERK1/2) signaling pathway causes serine phosphorylation by MAPK of several nucleoproteins, including the nuclear thyroid hormone receptor beta1. Because estrogen can activate MAPK and cause MAPK-dependent serine phosphorylation of nuclear estrogen receptor (ER)alpha, we studied whether thyroid hormone also promoted MAPK-mediated ERalpha phosphorylation. Human breast cancer (MCF-7) cells were incubated with physiological concentrations of l-T(4) or 17beta-estradiol (E(2)) for 15 min to 24 h, and nuclear ERalpha and serine-118-phosphorylated ERalpha were identified by Western blotting. Serine-118-phosphorylated ERalpha was recovered at 15 min in nuclei of MCF-7 cells exposed to either T(4) or E(2). The T(4) effect was apparent at 15 min and peaked at 2 h, whereas the E(2) effect was maximal at 4-6 h. T(4)-agarose was as effective as T(4) in causing phosphorylation of ERalpha. T(4) action on ERalpha was inhibited by PD 98059, an inhibitor of ERK1/2 phosphorylation, and by tetraiodothyroacetic acid, a T(4) analog that blocks cell surface-initiated actions of T(4) but is not itself an agonist. Electrophoretic mobility shift assay of nuclear extracts from T(4)-treated and E(2)-treated cells showed similar specific protein-DNA-binding. Indexed by [(3)H]thymidine incorporation and nuclear proliferating cell nuclear antigen, MCF-7 cell proliferation was stimulated by T(4) and T(4)-agarose to an extent comparable with the effect of E(2). This T(4) effect was blocked by either PD 98059 or ICI 182,780, an ER antagonist. Thus, T(4), like E(2), causes phosphorylation by MAPK of nuclear ERalpha at serine-118 in MCF-7 cells and promotes cell proliferation through the ER by a MAPK-dependent pathway.
Early studies demonstrated that whole-body androgen receptor (AR)-knockout mice with hypogonadism exhibit insulin resistance. However, details about the mechanisms underlying how androgen/AR signaling regulates insulin sensitivity in individual organs remain unclear. We therefore generated hepatic AR-knockout (H-AR ؊/y ) mice and found that male H-AR ؊/y mice, but not female H-AR ؊/؊ mice, fed a high-fat diet developed hepatic steatosis and insulin resistance, and aging male H-AR ؊/y mice fed chow exhibited moderate hepatic steatosis. We hypothesized that increased hepatic steatosis in obese male H-AR ؊/y mice resulted from decreased fatty acid -oxidation, increased de novo lipid synthesis arising from decreased PPAR␣, increased sterol regulatory element binding protein 1c, and associated changes in target gene expression. Reduced insulin sensitivity in fat-fed H-AR ؊/y mice was associated with decreased phosphoinositide-3 kinase activity and increased phosphenolpyruvate carboxykinase expression and correlated with increased protein-tyrosine phosphatase 1B expression. Conclusion: Together, our results suggest that hepatic AR may play a vital role in preventing the development of insulin resistance and hepatic steatosis. AR agonists that specifically target hepatic AR might be developed to provide a better strategy for treatment of metabolic syndrome in men. (HEPATOLOGY 2008;47:1924-1935
Recent evidence suggests that the thyroid hormone L-thyroxine (T 4 ) stimulates growth of cancer cells via a plasma membrane receptor on integrin A V B 3 . The contribution of this recently described receptor for thyroid hormone and receptor-based stimulation of cellular mitogen-activated protein kinase [MAPK; extracellular signal-regulated kinase 1/2 (ERK1/2)] activity, to enhancement of cell proliferation by thyroid hormone was quantitated functionally and by immunologic means in three glioma cell lines exposed to T 4 . At concentrations of 1 to 100 nmol/L, T 4 caused proliferation of C6, F98, and GL261 cells, measured by accumulation of proliferating cell nuclear antigen (PCNA) and radiolabeled thymidine incorporation. This effect was inhibited by the T 4 analogue, tetraiodothyroacetic acid, and by an A V B 3 RGD recognition site peptide, both of which block T 4 binding to integrin A V B 3 but are not agonists. Activation of MAPK by T 4 was similarly inhibited by tetraiodothyroacetic acid and the RGD peptide. The thyroid hormone 3,5,3 ¶-triiodo-L-thyronine (T 3 ) and T 4 were equipotent stimulators of PCNA accumulation in C6, F98, and GL261 cells, but physiologic concentrations of T 3 are 50-fold lower than those of T 4 . In conclusion, our studies suggest that glioblastoma cells are thyroid hormone dependent and provide a molecular basis for recent clinical observations that induction of mild hypothyroidism may improve duration of survival in glioblastoma patients. The present experiments infer a novel cell membrane receptor-mediated basis for the growth-promoting activity of thyroid hormone in such tumors and suggest new therapeutic approaches to the treatment of patients with glioblastoma. (Cancer Res 2006; 66(14): 7270-5)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.