The oxygen evolution reaction that occurs during water oxidation is of considerable importance as an essential energy conversion reaction for rechargeable metal–air batteries and direct solar water splitting. Cost-efficient ABO3 perovskites have been studied extensively because of their high activity for the oxygen evolution reaction; however, they lack stability, and an effective solution to this problem has not yet been demonstrated. Here we report that the Fe4+-based quadruple perovskite CaCu3Fe4O12 has high activity, which is comparable to or exceeding those of state-of-the-art catalysts such as Ba0.5Sr0.5Co0.8Fe0.2O3−δ and the gold standard RuO2. The covalent bonding network incorporating multiple Cu2+ and Fe4+ transition metal ions significantly enhances the structural stability of CaCu3Fe4O12, which is key to achieving highly active long-life catalysts.
Lithium-rich oxide electrodes with layered structures have attracted considerable interest because they can deliver high energy densities for lithium-ion batteries. However, there is significant debate regarding their redox chemistry. It is apparent that the mechanism of lithium extraction from lithium-rich Li2MnO3 is not fully understood, especially in relation to the observed O2 evolution and structural transformation. Here, delithiation and kinetic processes in Li2MnO3 are investigated using ab initio simulation techniques employing high level hybrid functionals as they reproduce accurately the electronic structure of oxygen hole states. We show that Li extraction is charge-compensated by oxidation of the oxide anion, so that the overall delithiation reaction involves lattice oxygen loss. Localized holes on oxygen (O–) are formed as the first step but are not stable leading to oxygen dimerization (with O–O ∼ 1.3 Å) and eventually to the formation of molecular O2. Oxygen dimerization facilitates Mn migration onto octahedral sites in the vacated lithium layers. The results suggest that reversible oxygen redox without major structural changes is only possible if the localized oxygen holes are stabilized and oxygen dimerization suppressed. Such an understanding is important for the future optimization of new lithium-rich cathode materials for high energy density batteries.
Combined computational and experimental examination of lithium-ion and proton dynamics in next-generation anti-perovskite solid electrolytes.
Metal oxides with a tunnelled structure are attractive as charge storage materials for rechargeable batteries and supercapacitors, since the tunnels enable fast reversible insertion/extraction of charge carriers (for example, lithium ions). Common synthesis methods can introduce large cations such as potassium, barium and ammonium ions into the tunnels, but how these cations affect charge storage performance is not fully understood. Here, we report the role of tunnel cations in governing the electrochemical properties of electrode materials by focusing on potassium ions in α-MnO2. We show that the presence of cations inside 2 × 2 tunnels of manganese dioxide increases the electronic conductivity, and improves lithium ion diffusivity. In addition, transmission electron microscopy analysis indicates that the tunnels remain intact whether cations are present in the tunnels or not. Our systematic study shows that cation addition to α-MnO2 has a strong beneficial effect on the electrochemical performance of this material.
Phase transformations driven by compositional change require mass flux across a phase boundary. In some anisotropic solids, however, the phase boundary moves along a non-conductive crystallographic direction. One such material is LiFePO, an electrode for lithium-ion batteries. With poor bulk ionic transport along the direction of phase separation, it is unclear how lithium migrates during phase transformations. Here, we show that lithium migrates along the solid/liquid interface without leaving the particle, whereby charge carriers do not cross the double layer. X-ray diffraction and microscopy experiments as well as ab initio molecular dynamics simulations show that organic solvent and water molecules promote this surface ion diffusion, effectively rendering LiFePO a three-dimensional lithium-ion conductor. Phase-field simulations capture the effects of surface diffusion on phase transformation. Lowering surface diffusivity is crucial towards supressing phase separation. This work establishes fluid-enhanced surface diffusion as a key dial for tuning phase transformation in anisotropic solids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.