A 2D computational model of the mixing of multiple metal vapours into a helium arc in gas tungsten arc welding of stainless steel is presented. The combined diffusion coefficient method, extended to three-gas mixtures, is used to treat helium–chromium–iron and helium–manganese–iron plasmas. It is found that all metal vapours penetrate to the arc centre and reach the cathode, with iron vapour confined near the cathode tip, while chromium and manganese vapours accumulate about 1.5 mm above the tip. The predicted distributions of chromium, manganese and iron show reasonable agreement with published photographic images and radial distributions of atomic line emission intensities. The results are also consistent with published measurements of the deposition of the metals on the cathode surface. A detailed examination of the influence of the different diffusion coefficients, net emission coefficients and vapour pressures of the metals on the metal vapour transport in the arc plasma is presented. It is shown that cataphoresis (diffusion due to applied electric fields) leads to the penetration of the metal vapours into the arc. The different distribution of iron vapour from those of chromium and manganese vapours near the cathode is strongly influenced by the lower ordinary diffusion coefficients of iron at low temperatures. Radiative emission is found to be important since it leads to cooling of the arc, which decreases the influence of cataphoresis. The vapour pressure only influences the concentration of the metal vapour close to the workpiece. Results for the two-gas helium–chromium and helium–iron systems are compared to those for the three-gas helium–chromium–iron system. It is shown that it is important to consider the different metal vapours simultaneously to obtain an accurate calculation of the metal vapour and arc temperature distributions.
Most thermal plasma applications involve interactions between the plasma and solid or liquid surfaces. Computational models of thermal plasma applications typically consider the influence of the plasma on the surface, but often neglect the effect of the surface on the plasma. In many cases, however, it is not possible to accurately model the plasma process without taking the two‐way interactions into account. This is demonstrated using examples from arc welding, plasma cutting, plasma‐particle interactions, such as occur in plasma spheroidization, plasma nanoparticle production and plasma spraying, and high‐ and low‐voltage circuit breakers. Vaporization of metal, ceramic and polymer surfaces, transfer of heat and momentum from the plasma to particles and droplets, and changes in the surface shape are all shown to affect the properties of the plasma.
A computational model of the mixing of multiple metal vapours, formed by vaporization of the surface of an alloy workpiece, into the thermal arc plasma in gas tungsten arc welding (GTAW) is presented. The model incorporates the combined diffusion coefficient method extended to allow treatment of three gases, and is applied to treat the transport of both chromium and iron vapour in the helium arc plasma. In contrast to previous models of GTAW, which predict that metal vapours are swept away to the edge of the arc by the plasma flow, it is found that the metal vapours penetrate strongly into the arc plasma, reaching the cathode region. The predicted results are consistent with published measurements of the intensity of atomic line radiation from the metal vapours. The concentration of chromium vapour is predicted to be higher than that of iron vapour due to its larger vaporization rate. An accumulation of chromium vapour is predicted to occur on the cathode at about 1.5 mm from the cathode tip, in agreement with published measurements. The arc temperature is predicted to be strongly reduced due to the strong radiative emission from the metal vapours. The driving forces causing the diffusion of metal vapours into the helium arc are examined, and it is found that diffusion due to the applied electric field (cataphoresis) is dominant. This is explained in terms of large ionization energies and the small mass of helium compared to those of the metal vapours.
Tungsten inert-gas (TIG) welding uses an electric arc between a tungsten cathode and a metal anode to partially melt the anode workpiece, forming a weld pool. Metal vapour emanating from the weld pool has important effects on the arc welding process. An axisymmetric computational model of the arc and weld pool is used to examine the transport and influence of iron vapour on an argon arc plasma. In contrast to previous studies that use approximate and incomplete treatments of diffusion, the present model incorporates the combined diffusion coefficient method, which takes into account all important driving forces. The influence of metal vapour is first examined for an arc current of 400 A. Metal vapour is predicted to be present in high concentrations above the anode and near the cathode tip, and in a lower concentration in the arc column. The presence of metal vapour in the arc is found to lead to a substantial reduction in arc temperature (up to 1600 K) and current density, resulting in a significant decrease in the weld pool depth and volume. It is shown that ordinary diffusion leads to iron vapour transport upward from the anode region along the arc fringes and into the recirculating convective flow, which carries the iron vapour to the cathode region. Here the upward diffusion driven by the electric field and temperature gradient traps the iron vapour below the cathode tip, leading to a high concentration in this region. The influence of arc current is investigated in the range from 150 to 400 A. The results obtained for standard welding currents of 150, 200 and 250 A also predict significant concentrations of iron vapour in the arc, with the concentration increasing with current in the arc column and near the anode. The concentration near the cathode tip is lower at 400 A because the temperature and electric field diffusion coefficients are lower at the higher temperatures present near the cathode. Spectroscopic measurements of atomic chromium emission for argon TIG welding of a chromium anode are presented and compared to predictions of the code. The measurements show the presence of metal vapour in both the cathode and anode regions, in agreement with the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.