Following chemotherapy and relapse, high-risk neuroblastoma tumors harbor more genomic alterations than at diagnosis, including increased transcriptional activity of the Yes-associated protein (YAP), a key downstream component of the Hippo signaling network. Although YAP has been implicated in many cancer types, its functional role in the aggressive pediatric cancer neuroblastoma is not well-characterized. In this study, we performed genetic manipulation of YAP in human-derived neuroblastoma cell lines to investigate YAP function in key aspects of the malignant phenotype, including mesenchymal properties, tumor growth, chemotherapy response, and MEK inhibitor response. Standard cytotoxic therapy induced YAP expression and transcriptional activity in patient-derived xenografts treated in vivo, which may contribute to neuroblastoma recurrence. Moreover, YAP promoted a mesenchymal phenotype in high-risk neuro-blastoma that modulated tumor growth and therapy resistance in vivo. Finally, the BH3-only protein, Harakiri (HRK), was identified as a novel target inhibited by YAP, which, when suppressed, prevented apoptosis in response to nutrient deprivation in vitro and promoted tumor aggression, chemotherapy resistance, and MEK inhibitor resistance in vivo. Collectively, these findings suggest that YAP inhibition may improve chemotherapy response in patients with neuroblastoma via its regulation of HRK, thus providing a critical strategic complement to MEK inhibitor therapy.Significance: This study identifies HRK as a novel tumor suppressor in neuroblastoma and suggests dual MEK and YAP inhibition as a potential therapeutic strategy in RAS-hyperactivated neuroblastomas. Materials and Methods Cell lines and patient-derived xenograft modelsHuman-derived neuroblastoma cell lines were obtained from the Children's Oncology Group Childhood Cancer Repository and the ATCC. Neuroblastoma cell lines were cultured in RPMI1640 (Sigma) with 10% FBS (Gemini) and 1% penicillin-streptomycin (Gemini)
γδ T lymphocytes represent an emerging class of cellular immunotherapy with preclinical promise to treat cancer, notably neuroblastoma. The innate-like immune cell subset demonstrates inherent cytoxicity toward tumor cells independent of MHC recognition, enabling allogeneic administration of healthy donor-derived γδ T cell therapies. A current limitation is the substantial interindividual γδ T cell expansion variation among leukocyte collections. Overcoming this limitation will enable realization of the full potential of allogeneic γδ T-based cellular therapy. Here, we characterize γδ T cell expansions from healthy adult donors and observe that highly potent natural killer (NK) lymphocytes expand with γδ T cells under zoledronate and IL-2 stimulation. The presence of NK cells correlates with both the expansion potential of γδ T cells and the overall potency of the γδ T cell therapy. However, the potency of the cell therapy in combination with an antibody-based immunotherapeutic, dinutuximab, appears to be independent of γδ T/NK cell content both in vitro and in vivo , which minimizes the implication of interindividual expansion differences toward efficacy. Collectively, these studies highlight the utility of maintaining the NK cell population within expanded γδ T cell therapies and suggest a synergistic action of combined innate cell immunotherapy toward neuroblastoma.
Supplemental levels of vitamin B1 (thiamine) have been implicated in tumor progression. Tumor cells adaptively up-regulate thiamine transport during hypoxic stress. Upon uptake, thiamine pyrophosphokinase-1 (TPK1) facilitates the rapid phosphorylation of thiamine into thiamine pyrophosphate (TPP). However, the regulation of TPK1 during hypoxic stress is undefined. Understanding how thiamine homeostasis changes during hypoxia will provide critical insight into the malignant advantage supplemental thiamine may provide cancer cells. Using Western blot analysis and RT-PCR, we have demonstrated the post-transcriptional up-regulation of TPK1 in cancer cells following hypoxic exposure. TPK1 expression was also adaptively up-regulated following alterations of redox status by chemotherapeutic and antioxidant treatments. Although TPK1 was functionally up-regulated by hypoxia, HPLC analysis revealed a reduction in intracellular TPP levels. This loss was reversed by treatment with cell-permeable antioxidants and corresponded with reduced ROS production and enhanced cellular proliferation during supplemental thiamine conditions. siRNA-mediated knockdown of TPK1 directly enhanced basal ROS levels and reduced tumor cell proliferation. These findings suggest that the adaptive regulation of TPK1 may be an essential component in the cellular response to oxidative stress, and that during supplemental thiamine conditions its expression may be exploited by tumor cells for a redox advantage contributing to tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.