Gold‐ilocks and the 3 mol % catalyst: Bimetallic gold bromides allow the room temperature aminoarylation of unactivated terminal olefins with aryl boronic acids using Selectfluor as an oxidant. A catalytic cycle involving gold(I)/gold(III) and a bimolecular reductive elimination for the key CC bond‐forming step is proposed. dppm= bis(diphenylphosphanyl)methane.
Chiral-anion phase-transfer catalysis (PTC) has been applied towards the enantioselective fluorocyclization reactions of 1,3-dienes. The method affords unprecedented fluorinated benz[f]isoquinoline and octahydroisoquinoline products in high yields and up to 96 % ee. New fluorinated amine reagents outperformed Selectfluor in the desired transformation.
Zweikernige Goldbromidkomplexe katalysieren die Aminoarylierung nichtaktivierter terminaler Olefine mit Arylboronsäuren und dem Oxidationsmittel Selectfluor bei Raumtemperatur. Ein Gold(I)‐Gold(III)‐Katalysezyklus mit einer bimolekularen reduktiven Eliminierung als Schlüsselschritt der C‐C‐Verknüpfung wird vorgeschlagen. dppm=Bis(diphenylphosphanyl)methan.
Herein is reported the first asymmetric utilization of aryldiazonium cations as a source of electrophilic nitrogen. This is achieved through a chiral anion phase-transfer pyrroloindolinization reaction that forms C3-diazenated pyrroloindolines from simple tryptamines and aryldiazonium tetrafluoroborates. The title compounds are obtained in up to 99% yield and 96% ee. The air- and water-tolerant reaction conditions accommodate electronic and steric diversity of the aryldiazonium electrophile and of the tryptamine core.
A mild, asymmetric Heck–Matsuda reaction of five-, six- and seven-membered ring alkenes and aryldiazonium salts is presented. High yields and enantioselectivities were achieved using Pd(0) and chiral anion co-catalysts, the latter functioning as a chiral anion phase-transfer (CAPT) reagent. For certain substrate classes, the chiral anion catalysts were modulated to minimize the formation of undesired by-products. More specifically, BINAM-derived phosphoric acid catalysts were shown to prevent alkene isomerization in cyclopentene and cycloheptene starting materials. DFT(B3LYP-D3) computations revealed that increased product selectivity resulted from a chiral anion dependent lowering of the activation barrier for the desired pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.