Forest Inventory and Analysis (FIA) is a US Department of Agriculture Forest Service program that aims to monitor changes in forests across the US. FIA hosts one of the largest ecological datasets in the world, though its complexity limits access for many potential users. rFIA is an R package designed to simplify the estimation of forest attributes using data collected by the FIA Program. Specifically, rFIA improves access to the spatio-temporal estimation capacity of the FIA Database via space-time indexed summaries of forest variables within userdefined population boundaries (e.g., geographic, temporal, biophysical). The package implements multiple design-based estimators, and has been validated against official estimates and sampling errors produced by the FIA Program. We demonstrate the utility of rFIA by assessing changes in abundance and mortality rates of ash (Fraxinus spp.) populations in the Lower Peninsula of Michigan following the establishment of emerald ash borer (Agrilus planipennis).
Changing forest disturbance regimes and climate are driving accelerated tree mortality across temperate forests. However, it remains unknown if elevated mortality has induced decline of tree populations and the ecological, economic, and social benefits they provide. Here, we develop a standardized forest demographic index and use it to quantify trends in tree population dynamics over the last two decades in the western United States. The rate and pattern of change we observe across species and tree size-distributions is alarming and often undesirable. We observe significant population decline in a majority of species examined, show decline was particularly severe, albeit size-dependent, among subalpine tree species, and provide evidence of widespread shifts in the size-structure of montane forests. Our findings offer a stark warning of changing forest composition and structure across the western US, and suggest that sustained anthropogenic and natural stress will likely result in broad-scale transformation of temperate forests globally.
The United States (US) Department of Agriculture Forest Service Forest Inventory and Analysis (FIA) program operates the national forest inventory of the US. Traditionally, the FIA program has relied on sample-based approaches—permanent plot networks and associated design-based estimators—to estimate forest variables across large geographic areas and long periods of time. These approaches generally offer unbiased inference on large domains but fail to provide reliable estimates for small domains due to low sample sizes. Rising demand for small domain estimates will thus require the FIA program to adopt non-traditional estimation approaches that are capable of delivering defensible estimates of forest variables at increased spatial and temporal resolution, without the expense of collecting additional field data. In light of this challenge, the development of small area estimation (SAE) methods—estimation techniques that support inference on small domains—for FIA data has become an active and highly productive area of research. Yet, SAE methods remain difficult to apply to FIA data, due in part to the complex data structures and survey design used by the FIA program. Herein, we present the potential of rFIA, an open-source R package designed to increase the accessibility of FIA data, to simplify the application of a broad suite of SAE methods to FIA data. We demonstrate this potential via two case studies: (1) estimation of contemporary county-level forest carbon stocks across the conterminous US using a spatial Fay-Herriot model; and (2) temporally-explicit estimation of multi-decadal trends in merchantable wood volume in Washington County, Maine using a Bayesian multi-level model. In both cases, we show the application of SAE techniques offers considerable improvements in precision over FIA's traditional, post-stratified estimators. Finally, we offer a discussion of the potential role that rFIA and other open-source tools might play in accelerating the adoption of SAE techniques among users of FIA data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.