MAGIS-100 is a next-generation quantum sensor under construction at Fermilab that aims to explore fundamental physics with atom interferometry over a 100 m baseline. This novel detector will search for ultralight dark matter, test quantum mechanics in new regimes, and serve as a technology pathfinder for future gravitational wave detectors in a previously unexplored frequency band. It combines techniques demonstrated in state-of-the-art 10-meter-scale atom interferometers with the latest technological advances of the world's best atomic clocks. MAGIS-100 will provide a development platform for a future kilometer-scale detector that would be sufficiently sensitive to detect gravitational waves from known sources. Here we present the science case for the MAGIS concept, review the operating principles of the detector, describe the instrument design, and study the detector systematics.
We report the first realization of large momentum transfer (LMT) clock atom interferometry. Using single-photon interactions on the strontium 1 S0 -3 P1 transition, we demonstrate Mach-Zehnder interferometers with state-of-the-art momentum separation of up to 141 k and gradiometers of up to 81 k. Moreover, we circumvent excited state decay limitations and extend the gradiometer duration to 50 times the excited state lifetime. Due to the broad velocity acceptance of the interferometry pulses, all experiments are performed with laser-cooled atoms at a temperature of 3 µK. This work has applications in high-precision inertial sensing and paves the way for LMT-enhanced clock atom interferometry in gravitational wave detection and dark matter search proposals. arXiv:1910.05459v1 [physics.atom-ph]
Floquet engineering offers a compelling approach for designing the time evolution of periodically driven systems. We implement a periodic atom-light coupling to realize Floquet atom optics on the strontium 1 S0 -3 P1 transition. These atom optics reach pulse efficiencies above 99.4% over a wide range of frequency offsets between light and atomic resonance, even under strong driving where this detuning is on the order of the Rabi frequency. Moreover, we use Floquet atom optics to compensate for differential Doppler shifts in large momentum transfer atom interferometers and achieve stateof-the-art momentum separation in excess of 400 k. This technique can be applied to any two-level system at arbitrary coupling strength, with broad application in coherent quantum control.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.