Recently developed military explosives are safer to handle, but more environmentally mobile, than traditional explosives. The new insensitive munitions, including 2,4dinitroanisole (DNAN), have been sparsely studied, making the use of bacterial and/or plant-based remediation approaches unfeasible without further information about the transformation of these compounds. To that end, Rhizobium lichtii isolated from willow tree tissues were studied and observed to completely degrade 5 mg L −1 DNAN within 24 h in liquid media with added carbon and nitrogen. The use of DNAN, [ 13 C 6 ]DNAN, and [ 15 N 2 ]DNAN enabled the identification of 11 previously unknown metabolites resulting from sulfation, acetylation, and/or methylation processes. Accurate mass analysis revealed DNAN metabolites with ion formulas of C
Insensitive munitions explosives are new formulations that are less prone to unintended detonation compared to traditional explosives. While these formulations have safety benefits, the individual constituents, such as 2,4-dinitroanisole (DNAN), have an unknown ecosystem fate with potentially toxic impacts to flora and fauna exposed to DNAN and/or its metabolites. Fungi may be useful in remediation and have been shown to degrade traditional nitroaromatic explosives, such as 2,4,6-trinitroluene and 2,4-dinitrotoluene, that are structurally similar to DNAN. In this study, a fungal Penicillium sp., isolated from willow trees and designated strain KH1, was shown to degrade DNAN in solution within 14 days. Stable-isotope labeled DNAN and an untargeted metabolomics approach were used to discover thirteen novel transformation products. Penicillium sp. KH1 produced DNAN metabolites resulting from ortho- and para-nitroreduction, demethylation, acetylation, hydroxylation, malonylation, and sulfation. Incubations with intermediate metabolites such as 2-amino-4-nitroanisole and 4-amino-2-nitroanisole as the primary substrates confirmed putative metabolite isomerism and pathways. No ring-cleavage products were observed, consistent with other reports that mineralization of DNAN is an uncommon metabolic outcome. The production of metabolites with unknown persistence and toxicity suggests further study will be needed to implement remediation with Penicillium sp. KH1. To our knowledge, this is the first report on the biotransformation of DNAN by a fungus.
New insensitive munitions explosives, including 2,4-dinitroanisole (DNAN), are replacing traditional explosive compounds to protect soldiers and simplify transport logistics. Despite the occupational safety benefits of these new explosives, feasible strategies for cleaning up DNAN from soil and water have not been developed. Here, we evaluate the metabolism of DNAN by the model plant Arabidopsis to determine whether phytoremediation can be used to clean-up contaminated sites. Furthermore, we evaluate the role of photodegradation of DNAN and its plant metabolites within Arabidopsis leaves to determine the potential impact of photolysis on the phytoremediation of contaminants. When exposed to DNAN for three days, Arabidopsis took up and metabolized 67% of the DNAN in hydroponic solution. We used high resolution and tandem mass spectrometry in combination with stable-isotope labeled DNAN to confirm ten phase II DNAN metabolites in Arabidopsis. The plants separately reduced both the para- and ortho-nitro groups and produced glycosylated products that accumulated within plant tissues. Both DNAN and a glycosylated metabolite were subsequently photolyzed within leaf tissue under simulated sunlight, and [15N2]DNAN yielded 15NO2 in leaves. Therefore, photolysis inside leaves may be an important, yet under-explored, phytoremediation mechanism.
Insensitive munitions formulations that include 3-nitro-1,2,4-triazol-5-one (NTO) are replacing traditional explosive compounds. While these new formulations have superior safety characteristics, the compounds have greater environmental mobility, raising concern over potential contamination and cleanup of training and manufacturing facilities. Here, we examine the mechanisms and products of NTO photolysis in simulated sunlight to further inform NTO degradation in sunlit surface waters. We demonstrate that NTO produces singlet oxygen and that dissolved oxygen increases the NTO photolysis rate in deionized water. The rate of NTO photolysis is independent of concentration and decreases slightly in the presence of Suwannee River Natural Organic Matter. The apparent quantum yield of NTO generally decreases as pH increases, ranging from 2.0 × 10–5 at pH 12 to 1.3 × 10–3 at pH 2. Bimolecular reaction rate constants for NTO with singlet oxygen and hydroxyl radical were measured to be (1.95 ± 0.15) × 106 and (3.28 ± 0.23) × 1010 M–1 s–1, respectively. Major photolysis reaction products were ammonium, nitrite, and nitrate, with nitrite produced in nearly stoichiometric yield upon the reaction of NTO with singlet oxygen. Environmental half-lives are predicted to span from 1.1 to 5.7 days. Taken together, these data enhance our understanding of NTO photolysis under environmentally relevant conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.