The M13 bacteriophage has been demonstrated to be a robust scaffold for bionanomaterial development. In this paper, we report on the chemical modifications of three kinds of reactive groups, i.e., the amino groups of lysine residues or N-terminal, the carboxylic acid groups of aspartic acid or glutamic acid residues, and the phenol group of tyrosine residues, on M13 surface. The reactivity of each group was identified through conjugation with small fluorescent molecules. Furthermore, the regioselectivity of each reaction was investigated by HPLC-MS-MS. By optimizing the reaction condition, hundreds of fluorescent moieties could be attached to create a highly fluorescent M13 bacteriophage. In addition, cancer cell targeting motifs such as folic acid could also be conjugated onto the M13 surface. Therefore, dual-modified M13 particles with folic acid and fluorescent molecules were synthesized via the selective modification of two kinds of reactive groups. Such dual-modified M13 particles showed very good binding affinity to human KB cancer cells, which demonstrated the potential applications of M13 bacteriophage in bioimaging and drug delivery.
The OH groups on the Zr-based nodes of ultrastable UiO-66 can be metallated with V V ions in a facile fashion to give the derivative VUiO-66. This metallated MOF exhibits high stability over a broad temperature range and displays high selectivity for benzene under low-conversion conditions in the vapor-phase oxidative dehydrogenation of cyclohexene (activation energy ∼110 kJ/mol). The integrity of the MOF is maintained after catalysis as determined by PXRD, ICP-AES, and SEM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.