High-salinity stress considerably affects plant growth and crop yield. Thus, developing techniques to enhance high-salinity stress tolerance in plants is important. In this study, we revealed that ethanol enhances high-salinity stress tolerance in Arabidopsis thaliana and rice. To elucidate the molecular mechanism underlying the ethanol-induced tolerance, we performed microarray analyses using A. thaliana seedlings. Our data indicated that the expression levels of 1,323 and 1,293 genes were upregulated by ethanol in the presence and absence of NaCl, respectively. The expression of reactive oxygen species (ROS) signaling-related genes associated with high-salinity tolerance was upregulated by ethanol under salt stress condition. Some of these genes encode ROS scavengers and transcription factors (e.g., AtZAT10 and AtZAT12). A RT-qPCR analysis confirmed that the expression levels of AtZAT10 and AtZAT12 as well as AtAPX1 and AtAPX2, which encode cytosolic ascorbate peroxidases (APX), were higher in ethanol-treated plants than in untreated control plants, when exposure to high-salinity stress. Additionally, A. thaliana cytosolic APX activity increased by ethanol in response to salinity stress. Moreover, histochemical analyses with 3,3′-diaminobenzidine (DAB) and nitro blue tetrazolium (NBT) revealed that ROS accumulation was inhibited by ethanol under salt stress condition in A. thaliana and rice, in which DAB staining data was further confirmed by Hydrogen peroxide (H2O2) content. These results suggest that ethanol enhances high-salinity stress tolerance by detoxifying ROS. Our findings may have implications for improving salt-stress tolerance of agriculturally important field-grown crops.
Abiotic stress is considered as a major factor limiting crop yield and quality. Development of effective strategies that mitigate abiotic stress is essential for sustainable agriculture and food security, especially with continuing global population growth. Recent studies have demonstrated that exogenous treatment of plants with chemical compounds can enhance abiotic stress tolerance by inducing molecular and physiological defense mechanisms, a process known as chemical priming. Chemical priming is believed to represent a promising strategy for mitigating abiotic stress in crop plants. Plants biosynthesize various compounds, such as phytohormones and other metabolites, to adapt to adverse environments. Research on artificially synthesized compounds has also resulted in the identification of novel compounds that improve abiotic stress tolerance. In this review, we summarize our current knowledge of both naturally synthesized and artificial priming agents that have been shown to increase abiotic stress tolerance in plants.
Vaccines against SARS-CoV-2 have shown high efficacy in clinical trials, yet a full immunologic characterization of these vaccines, particularly within the human upper respiratory tract, is less well known. Here, we enumerate and phenotype T cells in nasal mucosa and blood using flow cytometry before and after vaccination with the Pfizer-BioNTech COVID-19 vaccine (n = 21). Tissue-resident memory (Trm) CD8+ T cells expressing CD69+CD103+ increase in number ~12 days following the first and second doses, by 0.31 and 0.43 log10 cells per swab respectively (p = 0.058 and p = 0.009 in adjusted linear mixed models). CD69+CD103+CD8+ T cells in the blood decrease post-vaccination. Similar increases in nasal CD8+CD69+CD103− T cells are observed, particularly following the second dose. CD4+ cells co-expressing CCR6 and CD161 are also increased in abundance following both doses. Stimulation of nasal CD8+ T cells with SARS-CoV-2 spike peptides elevates expression of CD107a at 2- and 6-months (p = 0.0096) post second vaccine dose, with a subset of donors also expressing increased cytokines. These data suggest that nasal T cells may be induced and contribute to the protective immunity afforded by this vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.