In the present work, an experimental investigation has been conducted to analyse the effects of graphene-nanoplatelet (GnP) suspension on the thermal performance of automotive radiator. GnP nanofluids are prepared by dispersing the nanoparticles in distilled water with a concentration of 0-0.3 vol.%. The thermophysical properties of water-GnP nanofluid have been studied with different volumetric concentrations and temperatures. The present study shows that convective heat transfer performance of the automotive radiator could be enhanced by increasing the nanoparticle suspension, heating power, air flow and Reynolds number. The maximum thermal performance enhancement of 275% is achieved for 0.3 vol.% GnP nanofluid at the highest rated heating power. It is also evident that the suspension of nanoparticle has the most significant effect in enhancing the convective heat transfer of automotive radiator, followed by the effects of heating power, air velocity and Reynolds number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.