Unstable conditions are commonly encountered during industrial storage and transportation of frozen fish. Temperature stress and fluctuations may increase the amount of unfrozen water in the muscle and enzymatic activity and lipid oxidation can thus still take place during frozen storage. The aim of this study was to investigate the changes of characteristics of different muscle types of herring at unstable modelled conditions during storage and transportation. Compositional changes, lipid oxidation and lipid hydrolysis were monitored in light and dark muscle of Atlantic herring (Clupea harengus), during frozen storage, as affected by temperature stress (samples were stored at − 25 °C for 2 months, then stressed at − 12 °C for 1 month, followed by storage at a stable − 25 °C for the remaining storage duration), and compared to samples stored at a stable − 25 °C for 14 months. The dark muscle was more sensitive to lipid oxidation than the light muscle, leading to faster degradation. Increased lipid oxidation and lipid hydrolysis were observed in temperature‐stressed samples of both muscle types. The study demonstrated the importance of avoiding temperature stress during industrial frozen storage and transportation to improve the quality and shelf life of frozen herring products. Removal of dark muscle by deep skinning could benefit both processors and customers regarding the shelf life and nutritional value of the light herring muscle.
Increasing protein demand has led to growing attention being given to the full utilization of proteins from side streams in industrial fish processing. In this study, proteins were recovered from three protein-rich side streams during Tra catfish (Pangasius hypophthalamus) processing (dark muscle; head-backbone; and abdominal cut-offs) by an optimized pH-shift process. Physicochemical characteristics of the resulting fish protein isolates (FPIs) were compared to industrial surimi from the same raw material batch. The pH had a significant influence on protein extraction, while extraction time and the ratio of the extraction solution to raw material had little effect on the protein and dry matter recoveries. Optimal protein extraction conditions were obtained at pH 12, a solvent to raw material ratio of 8, and an extraction duration of 150 min. The resulting FPI contained <10% of the fat and <15% of the ash of the raw material, while the FPI protein recovery was 83.0–88.9%, including a good amino acid profile. All FPIs had significantly higher protein content and lower lipid content than the surimi, indicating the high efficiency of using the pH-shift method to recover proteins from industrial Tra catfish side streams. The FPI made from abdominal cut-offs had high whiteness, increasing its potential for the development of a high-value product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.