Background Deep venous thrombosis (DVT) of lower extremities is a common thrombotic disease, occurring either in isolation or as a complication of other diseases or procedures. MiR-21 is one of important microRNAs which play critical role in various cellular function. This study aim to determine the effect of miR-21 on endothelial progenitor cells (EPCs) and its role in predicting prognosis of DVT. Methods EPCs was isolated from DVT models and control subjects. miR-21 expression was confirmed by RT-PCR. Potential target mRNA was predicted by bioinformatics analysis. EPCs biological functions were examined by CCK-8 and tube formation assay. Besides, miR-21 expression was determined in DVT patients to investigate the correlation between miR-21 expression and prognosis of DVT. Cox proportional hazard regression analyses were also performed to reveal the risk factors associated with prognosis. Results Here, we found miR-21 was downregulated in EPCs of DVT model rats. Increased miR-21 expression promoted proliferation and angiogenesis of EPCs. Moreover, we demonstrated that FASLG was a target of miR-21 and revealed that FASLG knockdown inhibited function of EPCs. Upregulation of miR-21 led to thrombus resolution in a rat model of venous thrombosis. In addition, lower expression level of miR-21 in DVT patients was associated with an increase of recurrent DVT and post thrombotic syndrome (PTS). Furthermore, Cox proportional hazard regression analyses demonstrated miR-21 expression level as an independent predictor of recurrence of DVT. Conclusions Our data revealed a role of miR-21 in regulating biological function of EPCs and could be a predictor for recurrent DVT or PTS. Electronic supplementary material The online version of this article (10.1186/s12967-019-2015-z) contains supplementary material, which is available to authorized users.
Background Proliferation and migration play crucial roles in various physiological processes, especially in injured endothelial repair. Endothelial progenitor cells (EPCs), as the precursors of endothelial cell, are involved in the regeneration of the endothelial lining of blood vessels. Furthermore, EPCs were found to be a potential choice for venous thrombosis (VT) treatment. Material/Methods EPCs were isolated from human peripheral blood of healthy adults and VT patients. Differently expressed micro(mi)RNAs were examined by quantitative real-time polymerase chain reaction, after which proliferative capacity and migration effect were tested by Cell-Counting Kit 8, scratch wound assay, and transwell assays. Bioinformatic analysis was applied to investigate the potential target messenger ribonucleic acid and a dual-luciferase reporting system was utilized to confirm the binding of miR-22-3p to its target gene. Western blot was carried out to detect candidate protein expression level. Finally, miR-22-3p expression was monitored in VT patients during follow-up to assess its correlation with prognosis of VT. Results Our data revealed that miR-22-3p was upregulated in EPCs derived from deep VT (DVT) individuals and suppression of miR-22-3p contributed to proliferation and migration of EPCs. In addition, miR-22-3p/onecut 1 (OC1)/vascular endothelial growth factor A (VEGFA) signaling pathway was involved in regulating EPC migration and proliferation. In addition, lower expression of miR-22-3p in DVT patients indicated decreased risk of VT recurrence. Conclusions Our results suggest that miR-22-3p regulates OC1/VEGFA signaling and is involved in regulating EPC proliferation and migration. The expression level of miR-22-3p could be monitored to predict DVT patients’ prognosis.
BackgroundCoronary artery disease (CAD) is a main cause leading to increasing mortality of cardiovascular disease (CVD) worldwide. We aimed to discover marker genes and develop a diagnostic model for CAD.MethodsCAD-related target genes were searched from DisGeNET. Count expression data and clinical information were screened from the GSE202626 dataset. edgeR package identified differentially expressed genes (DEGs). Using online STRING tool and Cytoscape, protein-protein reactions (PPI) were predicted. WebGestaltR package was employed to functional enrichment analysis. We used Metascape to conduct module-based network analysis. VarElect algorithm provided genes-phenotype correlation analysis. Immune infiltration was assessed by ESTIMATE package and ssGSEA analysis. mRNAsi was determined by one class logistic regression (OCLR). A diagnostic model was constructed by SVM algorithm.Results162 target genes were screened by intersection 1,714 DEGs and 1,708 CAD related target genes. 137 target genes of the 162 target genes were obtained using PPI analysis, in which those targets were enriched in inflammatory cytokine pathways, such as chemokine signaling pathway, and IL-17 signaling pathway. From the above 137 target genes, four functional modules (MCODE1-4) were extracted. From the 162 potential targets, CAD phenotype were directly and indirectly associated with 161 genes and 22 genes, respectively. Finally, 5 hub genes (CCL2, PTGS2, NLRP3, VEGFA, LTA) were screened by intersections with the top 20, directly and indirectly, and genes in MCODE1. PTGS2, NLRP3 and VEGFA were positively, while LTA was negatively correlated with immune cells scores. PTGS2, NLRP3 and VEGFA were negatively, while LTA was positively correlated with mRNAsi. A diagnostic model was successfully established, evidenced by 92.59% sensitivity and AUC was 0.9230 in the GSE202625 dataset and 94.11% sensitivity and AUC was 0.9706 in GSE120774 dataset.ConclusionIn this work, we identified 5 hub genes, which may be associated with CAD development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.