Escherichia coli in shear flow near a surface are shown to exhibit a steady propensity to swim towards the left (within the relative coordinate system) of that surface. This phenomenon depends solely on the local shear rate on the surface, and leads to cells eventually aligning and swimming upstream preferentially along a left sidewall or crevice in a wide range of flow conditions. The results indicate that flow-assisted translation and upstream swimming along surfaces might be relevant in various models of bacterial transport, such as in pyelonephritis and bacterial migration in wet soil and aquatic environments in general.
We provide an experimental demonstration of positive rheotaxis (rapid and continuous upstream motility) in wild-type Escherichia coli freely swimming over a surface. This hydrodynamic phenomenon is dominant below a critical shear rate and robust against Brownian motion and cell tumbling. We deduce that individual bacteria entering a flow system can rapidly migrate upstream (>20 μm/s) much faster than a gradually advancing biofilm. Given a bacterial population with a distribution of sizes and swim speeds, local shear rate near the surface determines the dominant hydrodynamic mode for motility, i.e., circular or random trajectories for low shear rates, positive rheotaxis for moderate flow, and sideways swimming at higher shear rates. Faster swimmers can move upstream more rapidly and at higher shear rates, as expected. Interestingly, we also find on average that both swim speed and upstream motility are independent of cell aspect ratio.
We present a simple microfluidic platform that uses biocompatible ferrofluids for the controlled manipulation and rapid separation of both microparticles and live cells. This low-cost platform exploits differences in particle size, shape, and elasticity to achieve rapid and efficient separation. Using microspheres, we demonstrate size-based separation with 99% separation efficiency and sub-10-m resolution in <45 s. We also show continuous manipulation and shape-based separation of live red blood cells from sickle cells and bacteria. These initial demonstrations reveal the potential of ferromicrofluidics in significantly reducing incubation times and increasing diagnostic sensitivity in cellular assays through rapid separation and delivery of target cells to sensor arrays.ferromicrofluidics ͉ magnetic hole ͉ cell separation
We propose a concept for true wide bandwidth vibration energy harvesting. Our approach exploits nonlinear stretching of fixed-fixed beams in an off-resonance mode, effectively expanding the operational frequency range well beyond the narrow bandwidth of linear resonators. Our initial prototype demonstrates operation between 160–400 Hz, without the need for frequency tuning. A simple dynamic model shows good agreement with measurements. Optimized device geometry will allow for even lower frequency operation (starting at 60 Hz) at strain levels above 1e-3 (ideal for piezoelectric transduction).
We experimentally demonstrate that nonflagellated Escherichia coli strains follow modified Jeffery orbits in shear flow near a surface. We fully characterize their Jeffery orbits as a function of their aspect ratios and distance from that surface. Thanks to the linearity of Navier-Stokes equations under low-Reynolds-number conditions, the hydrodynamic body-wall interactions described here can be superimposed with flagellar motility and Brownian motion to construct models that explain the full picture of bacterial motility near a surface under shear flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.