Rainfall prediction is an important meteorological problem that can greatly affect humanity in areas such as agriculture production, flooding, drought, and sustainable management of water resources. The dynamic and nonlinear nature of the climatic conditions have made it impossible for traditional techniques to yield satisfactory accuracy for rainfall prediction. As a result of the sophistication of climatic processes that produced rainfall, using quantitative techniques to predict rainfall is a very cumbersome task. The paper proposed four non-linear techniques such as Artificial Neural Networks (ANN) for rainfall prediction. ANN has the capacity to map different input and output patterns. The Feed Forward Neural Network (FFNN), Cascade Forward Neural Network (CFNN), Recurrent Neural Network (RNN), and Elman Neural Network (ENN) were used to predict rainfall. The dataset used for this work contains some meteorological variables such as temperature, wind speed, humidity, rainfall, visibility, and others for the year 2015-2019. Simulation results indicated that of all the proposed Neural Network (NN) models, the Elman NN model produced the best performance. We also found out that Elman NN has the best performance for the year 2018 (having the lowest RMSE, MSE, and MAE of 6.360, 40.45, and 0.54 respectively). The results indicated that NN algorithms are robust, dependable, and reliable algorithms that can be used for daily, monthly, or yearly rainfall prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.