Aluminum based alloys have been widely used in the automotive, aircraft and defense applications because of good thermal and electrical conductivity, high tensile strength-to-weight ratio, high hardness, and ductility properties. Graphene, is an allotrope of carbon, attracts great attention worldwide due to its sp 2 -hybridized two-dimensional honeycomb structure, low weight, thermal, electrical, and mechanical properties. In the present study, high purity few-layered graphene (FLG) which was synthesized via electric arc discharge method (EAD) were reinforced to the Al-5Cu alloy matrix using various weight fraction of 0, 0.1, 0.3, and 0.5, by mechanically alloying (MA). These nano-composite powders were consolidated by cold pressing under 450 MPa and they were subjected to sintering at 570 °C and 580 °C for 3 hours under argon atmosphere. The microstructure of composites materials was studied by optical microscope and scanning electron microscopy. The FLG was observed to be dispersed homogeneously in the Al-5Cu alloy matrix. An increase in the micro hardness for Al-5Cu alloy with 0.5 wt% FLG (123 HV) by 45% was observed compared to pure Al-5Cu alloy (85 HV) sintered at 570 °C. Moreover, wear properties of these composite materials were investigated by means and analysis of variance (ANOVA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.