Additive manufacturing (AM) of Ni-based super alloys is more challenging, compared to the production other metallic alloys. This is due to their high melting point and excellent high temperature resistance. In the present work, an Inconel 718 alloy was fabricated by a powder laser bed fusion (P-LBF) process and investigated to assess its microstructural evolution, together with mechanical properties. Additionally, the alloy was compared against the cast (and forged) alloy of similar composition. The microstructure of the P-LBF-processed alloy shows hierarchy microstructure that consists of cellular sub-structure (~100–600 nm), together with melt pool and grain boundaries, in contrast of the twin infested larger grain microstructure of the cast alloy. However, the effect of such unique microstructure on mechanical properties of the L-PBF alloy was overwritten, due to the absence of precipitates. The hardness of the L-PBF-processed alloy (330–349 MPa) was lower than that of cast alloy (408 MPa). The similar trend was also observed in other mechanical properties, such as Young’s modulus, resistance to plasticity and shear stress.
In recent years, multi-phase materials capable of multi-ion transport have emerged as attractive candidates for a variety of electrochemical devices. Here, we provide experimental results for fabricating a composite electrolyte made up of a one-dimensional fast sodium-ion conductor, sodium zirconogallate, and an oxygen-ion conductor, yttria-stabilized zirconia. The composite is synthesized through a vapor phase conversion mechanism, and the kinetics of this process are discussed in detail. The samples are characterized using diffraction, electron microscopy, and electrochemical impedance spectroscopy techniques. Samples with a finer grain structure exhibit higher kinetic rates due to larger three-phase boundaries (TPBs) per unit area. The total conductivity is fitted to an Arrhenius type equation with activation energies ranging from 0.23 eV at temperatures below 550 °C to 1.07 eV above 550 °C. The electrochemical performance of multi-phase multi-species, mixed sodium- and oxygen-ion conductors, is tested under both oxygen chemical potential gradient as well as sodium chemical potential gradient, before and after reaching equilibrium, are discussed using the Goldman-Hodgkin-Kats (GHK) and the Nernst equation. The total conductivity of the degraded cathode and anode terminals is investigated using electrochemical impedance spectroscopy. The degradation investigation of samples indicates a decrease in conductivity adjacent to the anode terminal, the loss of sodium content, and the formation of β-gallia adjacent to the fuel electrode after ~396h at 1463 K.
This work presents a new method for processing single-crystal semiconductors designed by a computational method to lower the process temperature. This research study is based on a CALPHAD approach (ThermoCalc) to theoretically design processing parameters by utilizing theoretical phase diagrams. The targeted material composition consists of Bi–Se2–Te–Sb (BSTS). The semiconductor alloy contains three phases, hexagonal, rhombohedral-1, and rhombohedral-2 crystal structures, that are presented in the phase field of the theoretical pseudo-binary phase diagram. The semiconductor is also evaluated by applying Hume–Rothery rules along with the CALPHAD approach. Thermodynamic modelling suggests that single-crystals of BSTS can be grown at significantly lower temperatures and this is experimentally validated by low-temperature growth of single crystalline samples followed by exfoliation, compositional analysis, and diffraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.