Biodiversity hotspots understandably attract considerable conservation attention. However, deserts are rarely viewed as conservation priority areas, due to their relatively low productivity, yet these systems are home to unique species, adapted to harsh and highly variable environments. While global attention has been focused on hotspots, the world's largest tropical desert, the Sahara, has suffered a catastrophic decline in megafauna. Of 14 large vertebrates that have historically occurred in the region, four are now extinct in the wild, including the iconic scimitar-horned oryx (Oryx dammah). The majority has disappeared from more than 90% of their Saharan range, including addax (Addax nasomaculatus), dama gazelle (Nanger dama) and Saharan cheetah (Acinonyx jubatus hecki) -all now on the brink of extinction. Greater conservation support and scientific attention for the region might have helped to avert these catastrophic declines. The Sahara serves as an example of a wider historical neglect of deserts and the human communities who depend on them. The scientific community can make an important contribution to conservation in deserts by establishing baseline information on biodiversity and developing new approaches to sustainable management of desert species and ecosystems. Such approaches must accommodate mobility of both people and wildlife so that they can use resources most efficiently in the face of low and unpredictable rainfall. This is needed to enable governments to deliver on their commitments to halt further degradation of deserts and to improve their status for both biodiversity conservation and human well-being. Only by so-doing will deserts be able to support resilient ecosystems and communities that are best able to adapt to climate change.
Since being declared extinct in the wild in 1972, the Arabian oryx has been the subject of intense and sustained effort to maintain a healthy captive population and to reintroduce the species to its ancestral range. Previous reintroductions and associated genetic assessments focused on the release of closely managed zoo animals into Oman and included observations of inbreeding and outbreeding depression. Here we describe the use of multiple unmanaged herds as source populations for a new reintroduction project in the United Arab Emirates, allowing a comparison between studbook management and uncontrolled semi-captive breeding approaches to the conservation of genetic diversity. Results of mitochondrial control region sequencing and 13-locus microsatellite profiling highlight a severe lack of diversity within individual source populations, but a level of differentiation among populations that supports the formation of a mixed founder herd. The combined release group contained a similar level of diversity to each of the intensively managed captive populations. The research includes the first genetic data for animals held on Sir Bani Yas Island, a former private reserve which until recently held over 50% of the world's Arabian and scimitar-horned oryx and is recognized as having huge potential for re-establishing endangered antelope species in the wild. The genetic assessment provides the first stage of an ongoing genetic monitoring programme to support future supplemental releases, translocations and genetic management of reintroduced populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.