The process of extracting fuzzy patterns from temporal datasets is a well known data mining problem. Weekly pattern is one such example where it reflects a pattern with some fuzzy time interval every week. This process involves two steps. Firstly, it finds frequent sets and secondly, it finds the association rules that occur in certain time intervals weekly. Most of the fuzzy patterns are concentrated as user defined. However, the probability of user not having prior knowledge of datasets being used in some applications is more. Thus, resulting in the loss of fuzziness related to the problem. The limitation of the natural language also bounds the user in specifying the same. This paper, proposes a method of extracting patterns that occur weekly in a particular fuzzy time frame and the fuzzy time frame is generated by the method itself. The efficacy of the method is backed by the experimental results
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.