Phosphatidylserine (PS) has been shown to be a critical lipid factor in the assembly and spread of numerous lipid enveloped viruses. Here, we describe the ability of the Ebola virus (EBOV) matrix protein eVP40 to induce clustering of PS and promote viral budding in vitro, as well as the ability of an FDA approved drug, fendiline, to reduce PS clustering subsequently reducing virus budding and entry. To gain mechanistic insight into fendiline inhibition of EBOV replication, multiple in vitro assays were employed including imaging, viral budding and viral entry assays. Fendiline reduced the PS content in mammalian cells and PS in the plasma membrane, reducing the ability of VP40 to form new virus particles. Further, particles that do form from fendiline treated cells have altered particle morphology and decreased infectivity capacity. These complementary studies reveal the mechanism by which filovirus matrix proteins cluster PS to enhance viral assembly, budding, and spread from the host cell while also laying the groundwork for fundamental drug targeting strategies.
SummaryMarburg virus major matrix protein (mVP40) dimers associate with anionic lipids at the plasma membrane and undergo a dynamic and extensive self-oligomerization into the structural matrix layer which confers the virion shape and stability. Using a myriad of in vitro and cellular techniques, we present a mVP40 assembly model highlighting two distinct oligomerization interfaces (N-terminal domain (NTD) and C-terminal domain (CTD)) in mVP40. Cellular studies of NTD and CTD oligomerization interface mutants demonstrated the importance of each interface in the mVP40 matrix assembly through protein trafficking to the plasma membrane and homo-multimerization that induced protein enrichment, plasma membrane fluidity changes and elongations at the plasma membrane. A novel APEX-TEM method was employed to closely assess the ultrastructural localization of and formation of viral particles for wild type and mutants. Taken together, these studies present a mechanistic model of mVP40 oligomerization and assembly at the plasma membrane during virion assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.