Unnamed Aerial Vehicles (UAVs) are becoming increasingly popular and widely used for surveillance and reconnaissance. There are some recent studies regarding moving object detection, tracking, and classification from UAV videos. A unifying study, which also extends the application scope of such previous works and provides real-time results, is absent from the literature. This paper aims to fill this gap by presenting a framework that can robustly detect, track and classify multiple moving objects in real-time, using commercially available UAV systems and a common laptop computer. The framework can additionally deliver practical information about the detected objects, such as their coordinates and velocities. The performance of the proposed framework, which surpasses human capabilities for moving object detection, is reported and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.