Myocardial fibrosis refers to a variety of quantitative and qualitative changes in the interstitial myocardial collagen network that occur in response to cardiac ischaemic insults, systemic diseases, drugs, or any other harmful stimulus affecting the circulatory system or the heart itself. Myocardial fibrosis alters the architecture of the myocardium, facilitating the development of cardiac dysfunction, also inducing arrhythmias, influencing the clinical course and outcome of heart failure patients. Focusing on myocardial fibrosis may potentially improve patient care through the targeted diagnosis and treatment of emerging fibrotic pathways. The European Commission funded the FIBROTARGETS consortium as a multinational academic and industrial consortium with the primary aim of performing a systematic and collaborative search of targets of myocardial fibrosis, and then translating these mechanisms into individualized diagnostic tools and specific therapeutic pharmacological options for heart failure. This review focuses on those methodological and technological aspects considered and developed by the consortium to facilitate the transfer of the new mechanistic knowledge on myocardial fibrosis into potential biomedical applications.
Telomerase is a ribonucleoprotein enzyme which has been linked to malignant transformation in human cells. Telomerase activity is increased in the vast majority of human tumors, making its gene product the first molecule common to all human tumors. The generation of endogenously processed telomerase peptides bound to Class I MHC molecules could therefore target cytotoxic T lymphocytes (CTL) to tumors of different origins. This could advance vaccine therapy against cancer provided that precursor CTL recognizing telomerase peptides in normal adults and cancer patients can be expanded through immunization. We demonstrate here that the majority of normal individuals and patients with prostate cancer immunized in vitro against two HLA-A2.1 restricted peptides from telomerase reverse transcriptase (hTRT) develop hTRT-specific CTL. This suggests the existence of precursor CTL for hTRT in the repertoire of normal individuals and in cancer patients. Most importantly, the CTL of cancer patients specifically lysed a variety of HLA-A2 ؉ cancer cell lines, demonstrating immunological recognition of endogenously processed hTRT peptides. Moreover, in vivo immunization of HLA-A2.1 transgenic mice generated a specific CTL response against both hTRT peptides. Based on the induction of CTL responses in vitro and in vivo, and the susceptibility to lysis of tumor cells of various origins by hTRT CTL, we suggest that hTRT could serve as a universal cancer vaccine for humans.
Human chronic myelogenous leukemia (CML) is characterized by a translocation between chromosomes 9 and 22 that results in a BCR-ABL fusion gene coding for chimeric proteins. The junctional region of the BCR-ABL b3a2 molecule represents a potential leukemia-specific antigen which could be recognized by cytotoxic T lymphocytes (CTL). In fact, we identified a junctional nonapeptide (SSKALQRPV) which binds to HLA-A2.1 molecules. This peptide, as well as those binding to HLA-A3, -A11, and -B8 molecules (previously identified by others), elicits primary CTL responses in vitro from PBLs of both healthy donors and CML patients. Such CTL recognize HLA-matched, BCR-ABL-positive leukemic cells, implying efficient natural processing and presentation of these junctional peptides. Specific CTL were found at high frequency in 5 of 21 CML patients, suggesting that these epitopes are, to some extent, immunogenic in vivo during the course of the disease. These peptides could be useful for the development of specific immunotherapy in CML patients. ( J. Clin. Invest. 1998. 101:2290-2296.)
This study in STEMI patients treated with contemporary mechanical revascularization principles did not show any effect of TRO40303 in limiting reperfusion injury of the ischaemic myocardium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.