Suspended sediment load (SSL) time series have three principal inherent components (autoregressive trend, seasonality and stochastic terms) and the overall performance of an SSL modeling tool is associated with the correct estimation of these components. In this study, novel developments of artificial neural network (ANN) models, emotional ANN (EANN) and hybrid wavelet-EANN (WEANN), are employed to estimate the daily and monthly SSL of two rivers (Upper Rio Grande and Lighvanchai) with different hydro-geomorphological conditions. The overall results obtained via autoregressive models, the ANN and EANN, specify the supremacy of EANN (with a few hormonal parameters) against ANN due to the EANN better training the model versus extreme conditions. Also, the obtained results exhibit that the WEANN model could improve the SSL modeling up to 42% and 14% for daily modeling and up to 141% and 87% for monthly modeling in the Upper Rio Grande and Lighvanchai Rivers, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.