Dietary supplements containing arginine are among the most popular ergogenics intended to enhance strength, power and muscle recovery associated with both anaerobic and aerobic exercise. The aim of the present study was to evaluate the possible effect of pre-exercise acute intake of arginine on performance and exercise metabolism during incremental exhaustive exercise in elite male wrestlers. Nine volunteer elite male wrestlers (24.7±3.8 years) participated in this study. The test-retest protocol was used on the same subjects. The study was conducted using a cross-over design. A single dose of arginine (1.5 g · 10 kg-1 body weight) or placebo was given to the subjects after 12 hours fasting (during the night) for both test and retest. Subjects were allowed to drink water but not allowed to eat anything between arginine or placebo ingestion and the exercise protocol. An incremental exercise protocol was applied and oxygen consumption was measured during the exercise. Heart rate and plasma lactate levels were measured during the exercise and recovery. Results showed that in the same working loads there was no significant difference for the mean lactate levels and no difference in maximum oxygen consumption (arginine 52.47±4.01 mL · kg-1 · min-1, placebo 52.07±5.21 mL · kg-1 · min-1) or in maximum heart rates (arginine 181.09±13.57 bpm, placebo 185.89±7.38 bpm) between arginine and placebo trials. Time to exhaustion was longer with arginine supplementation (1386.8±69.8 s) compared to placebo (1313±90.8 s) (p < 0.05). These results suggest that L-arginine supplementation can have beneficial effects on exercise performance in elite male wrestlers but cannot explain the metabolic pathways which are responsible from these effects.
ObjectiveTo investigate the effects of high-intensity interval training (HIIT) and sprint interval training (SIT) on fat oxidation during exercise (FatOx) and how they compare with the effects of moderate-intensity continuous training (MICT).DesignSystematic review and meta-analysis.Data sourcesAcademic Search Ultimate, CINAHL, Networked Digital Library of Theses and Dissertations, Open Access Theses and Dissertations, OpenDissertations, PubMed/MEDLINE, Scopus, SPORTDiscus and Web of Science.Eligibility criteria for selecting studiesStudies using a between-group design, involving adult participants who were not trained athletes, and evaluating effects of HIIT or SIT on FatOx (vs no exercise or MICT) were included.ResultsEighteen studies of fair-to-good quality were included; nine comparing HIIT or SIT with no exercise and eleven comparing HIIT or SIT with MICT. A significant pooled effect of these types of interval training on FatOx was found (mean difference in g/min (MD)=0.08; 95% confidence interval (CI) 0.04 to 0.12; p<0.001). Significant effects were found for exercise regimens lasting ≥4 weeks, and they increased with every additional week of training (β=0.01; 95% CI 0.00 to 0.02; p=0.003). HIIT and/or SIT were slightly more effective than MICT (MD=0.03; 95% CI 0.01 to 0.05; p=0.005). The effects on FatOx were larger among individuals with overweight/obesity.ConclusionEngaging in HIIT or SIT can improve FatOx, with larger effects expected for longer training regimens and individuals with overweight/obesity. While some effects seem small, they may be important in holistic approaches to enhance metabolic health and manage obesity.
Sports participation is not without risk, and most athletes incur at least one injury throughout their careers. Combat sports are popular all around the world, and about one-third of their injuries result in more than 7 days of absence from competition or training. The most frequently injured body regions are the head and neck, followed by the upper and lower limbs, while the most common tissue types injured are superficial tissues and skin, followed by ligaments and joint capsules. Nutrition has significant implications for injury prevention and enhancement of the recovery process due to its effect on the overall physical and psychological well-being of the athlete and improving tissue healing. In particular, amino acid and protein intake, antioxidants, creatine, and omega-3 are given special attention due to their therapeutic roles in preventing muscle loss and anabolic resistance as well as promoting injury healing. The purpose of this review is to present the roles of various nutritional strategies in reducing the risk of injury and improving the treatment and rehabilitation process in combat sports. In this respect, nutritional considerations for muscle, joint, and bone injuries as well as sports-related concussions are presented. The injury risk associated with rapid weight loss is also discussed. Finally, preoperative nutrition and nutritional considerations for returning to a sport after rehabilitation are addressed.
Engaging in regular exercise results in a range of physiological adaptations offering benefits for exercise capacity and health, independent of age, gender or the presence of chronic diseases. Accumulating evidence shows that lack of time is a major impediment to exercise, causing physical inactivity worldwide. This issue has resulted in momentum for interval training models known to elicit higher enjoyment and induce adaptations similar to or greater than moderate-intensity continuous training, despite a lower total exercise volume. Although there is no universal definition, high-intensity interval exercise is characterized by repeated short bursts of intense activity, performed with a “near maximal” or “all-out” effort corresponding to ≥90% of maximal oxygen uptake or >75% of maximal power, with periods of rest or low-intensity exercise. Research has indicated that high-intensity interval training induces numerous physiological adaptations that improve exercise capacity (maximal oxygen uptake, aerobic endurance, anaerobic capacity etc.) and metabolic health in both clinical and healthy (athletes, active and inactive individuals without any apparent disease or disorder) populations. In this paper, a brief history of high-intensity interval training is presented, based on the novel findings of some selected studies on exercise capacity and health, starting from the early 1920s to date. Further, an overview of the mechanisms underlying the physiological adaptations in response to high-intensity interval training is provided.
Highlights This is the first study showing that 6 high-intensity interval training (HIIT) sessions over just 5 days is just as effective in increasing maximal oxygen uptake and endurance capacity and is more effective at improving submaximal exercise fat oxidation than 6 HIIT sessions over 2 weeks. Five days of HIIT that lasts 60 min in total may be a potent stimulus to improve exercise performance and substrate oxidation. Our findings reveal that this protocol achieves the fastest adaptation in response to a HIIT regime. This study represents an important conceptual advance in demonstrating the remarkable ability of the human body to adapt to exercise stress in less than 2 weeks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.