A multi‐step surface reaction mechanism for partial oxidation and steam reforming of propane over Rh/Al2O3 catalysts is presented. The mechanism is also applicable to model reactions of the subsystems H2/CO/H2O/CO2/O2/CH4. A stagnation–flow reactor with a catalytically coated disk is used to determine the surface reaction rate and spatial concentration profiles on top of the catalytic plate using a micro‐probe sampling technique. The reactor configuration facilitates one‐dimensional modeling of coupled diffusive and convective transport within the gas‐phase boundary layer coupled with detailed heterogeneous chemistry models of the zero‐dimensional surface. The reaction system is studied at varying inlet concentrations and temperatures. The established reaction kinetics are furthermore tested by simulation of autothermal reforming of propane in an annular reactor previously described by Pagani.
Water-gas-shift (WGS) and reverse water-gas-shift (RWGS) reactions are numerically investigated in a stagnation-flow on a porous Rh/Al 2 O 3 catalyst. External and internal mass transfer effects are studied using three different models for the mass transport and chemical conversion inside the porous catalyst: the dusty-gas model, a set of reaction-diffusion equations, and the effectiveness factor approach. All three models are coupled with the boundary layer equations to describe the potential flow on the stagnation disc, and a multi-step surface reaction mechanism is implemented. The numerically predicted species profiles in the external boundary layer are compared with recently measured profiles. Internal mass transfer limitations are more significant than external ones in case of the 100 μm thick catalyst layer. The effects of catalyst structure (thickness, mean pore diameter, porosity, tortuosity) as well as flow rate and pressure on chemical conversion are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.