Flammability, fire performance, and thermal stability of short glass fiber reinforced polyamide-6 and polyamide-66 containing halogenated and halogen-free flame retardants (FRs) were compared. Flammabilities were assessed by limiting oxygen index tests and UL94 classifications. Fire behavior was evaluated by mass loss cone calorimetry, a bench-scale tool, to assess fire performance of materials. Halogen-free, phosphorus-based FRs were shown to perform superior to halogenated counterparts on the basis of important fire properties, peak heat release rate, time to ignition, and fire growth index. Moreover, thermal stabilities were maintained at an acceptable level as a clear advantage of halogen-free FRs.
Interfacial properties, crystallinity and flammability of short fiber reinforced and flame retarded polyamide 6 and polyamide 66 compounds are investigated, emphasizing the influence of flame retardant fillers on the resistance of fiber/matrix interface to shear. Interfacial shear strengths are derived through a micromechanical approach by determining the tensile properties and residual fiber length distributions. Validated by fracture morphologies, interfacial strengths are found to be governed by filler -induced apparent crystallinities and fractional occurrence of polyamide polymorphs, obtained via peak deconvolution of X-Ray diffraction patterns. Although flame retardant additives based on Br/Sb synergism are found to impart excellent flammability reductions regarding oxygen index and UL94 classifications (V-0 rating), degree of crystallinity; thus, interfacial properties are deteriorated due to lowered thermal expansion and increased cooling rates. Red phosphorus as a flame retardant also induces a UL94 V-0 and significant reduction in flammability together with the facts that crystallinity is not altered and a strong fiber/matrix interface is maintained. Use of melamine cyanurate in an unreinforced polyamide improves the limiting oxygen index considerably; however, the UL94 rating remains unchanged as V-2 as a consequence of increased level of melt dripping. Melamine cyanurate additionally increases the degree of crystallinity through promotion of heterogeneous nucleation.
Due to their very high levels of flame retardancy, chlorinated and brominated flame retardants had been the most widely used flame retardant additives in plastics industry. However, these flame retardants lead to formation of very toxic volatiles and by-products during fire. Therefore, the recent trend is to replace all of them with non-halogenated flame retardants. In this respect, the use of nanoclays as a synergist flame retardant is becoming more and more important. Thus, the main aim of this work was to investigate the synergistic flame retardant effect of nanoclays with phosphorous compounds in polyamide-6 composites. For this purpose, exfoliated clay nanocomposites of flame retarded/glass fiber reinforced polyamide-6 were prepared by melt compounding. A flame retardant based on phosphorus compounds was used at various levels in glass fiber reinforced polyamide-6 and nanocomposites. Flammability and fire behaviors were evaluated by limiting oxygen index, UL94 and cone calorimeter tests. Substitution of a certain fraction of the flame retardant with nanoclays was found to significantly reduce the peak heat release rate and delay the ignition in cone calorimeter. Moreover, remarkable improvements were obtained in limiting oxygen index along with maintained UL94 ratings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.