Laser distance sensors are a widespread, fast and contactless approach for distance and surface topography measurements. Main characteristics of those sensors are given by resolution, measurement speed and geometry of sensor. With decreasing sensor size, the alignment of the optical components in sensor setup becomes more challenging. The depth response of optical profilers is analyzed to obtain characteristic parameters and, thus, to value the alignment and the transfer behavior of those sensors. We present a novel miniaturized sensor setup comprising of confocal and interferometric confocal signals within one sensor in order to compare both principles simply by obscuring the reference arm by an absorber. Further, we introduce a theoretical signal modeling in order to analyze influences such as spatial coherence, Gaussian beam characteristics and tilted reflectors on depth response signals. In addition to this, we show that the coherent superposition significantly reduces the axial resolution due to the confocal effect in interferometric signals compared to simple confocal signals in measurement and simulation results. Finally, an appropriate fit function is presented, in order to figure out characteristic sensor parameters from the depth response signal obtained based on analysis. In this context, a good agreement to simulated and measured signals is achieved.
We present a Mirau-type coherence scanning interferometer (CSI) with an oscillating reference mirror and an integrated interferometric distance sensor (IDS) sharing the optical path with the CSI. The IDS works simultaneously with the CSI and measures the distance changes during the depth scanning process with high temporal resolution. The additional information acquired by the IDS is used to correct the CSI data disturbed by unwanted distance changes due to environmental vibrations subsequent to the measurement. Due to the fixed reference mirror in commercial Mirau objectives, a Mirau attachment (MA) comprising an oscillating reference mirror is designed and built. Compared to our previous systems based on the Michelson and the Linnik interferometer, the MA represents a novel solution that completes the range of possible applications. Due to its advantages, the Mirau setup is the preferred and most frequently used interferometer type in industry. Therefore, the industrial use is ensured by this development. We investigate the functioning of the system and the capability of the vibration compensation by several measurements on various surface topographies.
Early detection of cancer can significantly increase the survival chances of patients. Palpation is a traditional method in order to detect cancer; however, in minimally invasive surgery the surgeon is deprived of the sense of touch. We demonstrate how shearing elastography can recover elastic parameters and furthermore can be used to localize stiffness imhomogenities even if hidden underneath the surface. Furthermore, the influence of size and depth of the stiffness imhomogenities on the detection accuracy and localization is investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.