Green vegetation plays a vital role in urban ecosystem services. Rapid urbanization often tends to induce urban vegetation cover fragmentation (UVCF) in cities and suburbs. Mapping the changes in the structure (aggregation) and abundance of urban vegetation cover helps to make improved policies for sustainable urban development. In this paper, a new distance-based landscape indicator to UVCF, Frag, was proposed first. Unlike many other landscape indicators, Frag measures UVCF by considering simultaneously both the structure and abundance of vegetation cover at local scales, and thus provides a more comprehensive perspective in understanding the spatial distribution patterns in urban greenness cover. As a case study, the urban greenness fragmentation indicated by Frag was demonstrated in Wuhan metropolitan area (WMA), China in 2015 and 2020. Support vector machine (SVM) was then designed to examine the impact on the Frag changes from the associated factors, including urbanization and terrain characteristics (elevation and slope). The Frag changes were mapped at different scales and modeled by SVM from the selected factors, which reasonably explained the Frag changes. Sensitivity analysis for the SVM model revealed that urbanization showed the most dominant factor for the Frag changes, followed by terrain elevation and slope. We conclude that Frag is an effective scale-dependent indicator to UVCF that can reflect changes in the structure and abundance of urban vegetation cover, and that modeling the impact of the associated factors on UVCF via the Frag indicator can provide essential information for urban planners.
Forests play a vital role in sequestering carbon dioxide from the atmosphere. Vegetation phenology is sensitive to climate changes and natural environments. Exploring the patterns in phenological events of the forests can provide useful insights for understanding the dynamics of vegetation growth and their responses to climate variations. Deciduous forest in North America is an important part of global forests. Here we apply time-series remote sensing imagery to map the critical dates of vegetation phenological events, including the start of season (SOS), end of season (EOS), and growth length (GL) of the deciduous forests in North America during the past two decades. The findings show that the SOS and EOS present considerable spatial and temporal variations. Earlier SOS, delayed EOS, and therefore extended GL are detected in a large part of the study area from temporal trend analysis over the years, though the magnitude of the trend varies at different locations. The phenological events are found to correlate to the environmental factors and the impact on the vegetation phenology from the factors is location-dependent. The findings confirm that the phenology of the deciduous forests in North America is updated such as advanced SOS and delayed EOS in the last two decades and the climate variations are likely among the driving forces for the updates. Considering that previous studies warn that shifts in vegetation phenology could reverse the role of forests as net emitters or net sinks, we suggest that forest management should be strengthened to forests that experience significant changes in the phenological events.
Green vegetation plays a vital role in energy flows and matter cycles in terrestrial ecosystems, and vegetation phenology may not only be influenced by, but also impose active feedback on, climate changes. The phenological events of vegetation such as the start of season (SOS), end of season (EOS), and length of season (LOS) can respond to climate changes and affect gross primary productivity (GPP). Here, we coupled satellite remote sensing imagery with FLUXNET observations to systematically map the shift of SOS, EOS, and LOS in global vegetated area, and explored their response to climate fluctuations and feedback on GPP during the last two decades. The results indicated that 11.5% of the global vegetated area showed a significantly advanced trend in SOS, and that only 5.2% of the area presented significantly delayed EOS during the past two decades, resulting in significantly prolonged LOS in 12.6% of the vegetated area. The climate factors, including seasonal temperature and precipitation, attributed to the shifts in vegetation phenology, but with high spatial and temporal difference. LOS was positively and significantly correlated with GPP in 20.2% of the total area, highlighting that longer LOS is likely to promote vegetation productivity. The feedback on GPP from the shifted vegetation phenology may serve as an adaptation mechanism for terrestrial ecosystems to mitigate global warming through improved carbon uptake from the atmosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.