The bone-cartilage unit (BCU) is a universal feature in diarthrodial joints, which is mechanically-graded and subjected to shear and compressive strains. Changes in the BCU have been linked to osteoarthritis (OA) progression. Here we report existence of a physiological internal strain gradient (pre-strain) across the BCU at the ultrastructural scale of the extracellular matrix (ECM) constituents, specifically the collagen fibril. We use X-ray scattering that probes changes in the axial periodicity of fibril-level D-stagger of tropocollagen molecules in the matrix fibrils, as a measure of microscopic pre-strain. We find that mineralized collagen nanofibrils in the calcified plate are in tensile pre-strain relative to the underlying trabecular bone. This behaviour contrasts with the previously accepted notion that fibrillar pre-strain (or D-stagger) in collagenous tissues always reduces with mineralization, via reduced hydration and associated swelling pressure. Within the calcified part of the BCU, a finer-scale gradient in pre-strain (0.6% increase over ~50μm) is observed. The increased fibrillar pre-strain is linked to prior research reporting large tissue-level residual strains under compression. The findings may have biomechanical adaptative significance: higher in-built molecular level resilience/damage resistance to physiological compression, and disruption of the molecular-level pre-strains during remodelling of the bone-cartilage interface may be potential factors in osteoarthritis-based degeneration.
The bone-cartilage interface (BCI) and underlying calcified plate is a universal feature in diarthrodial joints. The BCI is an important mechanically-graded interface subjected to shear and compressive strains, and changes at the BCI have been linked to osteoarthritis progression. Here we report the existence of a physiological internal strain gradient (pre-strain) across the BCI at the ultrastructural scale of the extracellular matrix constituents, specifically the collagen fibril. We use X-ray scattering that probes changes in the axial periodicity of fibril-level D-stagger of tropocollagen molecules in the matrix fibrils, as a measure of microscopic pre-strain. We find that mineralized collagen nanofibrils in the calcified BCI are in tension pre-strain relative to the underlying trabecular bone. This behaviour contrasts with the previously accepted notion that fibrillar pre-strain (or D-stagger) in collagenous tissues always reduces with mineralization due to reduced hydration and associated swelling pressure. Within the calcified tissue, a finer-scale gradient in pre-strain over ~50 micron is likely linked to the tidemark. The increased fibrillar pre-strain at the BCI is linked to prior research reporting large tissue-level residual strains under compression. The findings may have biomechanical adaptative significance: higher in-built molecular level resilience/damage resistance to physiological compression, and the disruption of the molecular-level pre-strains during remodelling of the BCI may be a potential factor in osteoarthritis based degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.