Environmental sequencing surveys of soils and freshwaters revealed high abundance and diversity of the Rhogostomidae, a group of omnivorous thecate amoebae. This is puzzling since only a few Rhogostomidae species have yet been described and only a handful of reports mention them in field surveys. We investigated the putative cryptic diversity of the Rhogostomidae by a critical re-evaluation of published environmental sequencing data and in-depth ecological and morphological trait analyses. The Rhogostomidae exhibit an amazing diversity of genetically distinct clades that occur in a variety of different environments. We further broadly sampled for Rhogostomidae species; based on these isolates, we describe eleven new species and highlight important morphological traits for species delimitation. The most important environmental drivers that shape the Rhogostomidae community were soil moisture, soil pH, and total plant biomass. The length/width ratio of the theca was a morphological trait related to the colonized habitats, but not the shape and size of the aperture that is often linked to moisture adaption in testate and thecate amoebae.
Earthworms are considered ecosystem engineers due to their fundamental impact on soil structure, soil processes and on other soil biota. An invasion of non-native earthworm species has altered soils of North America since European settlement, a process currently expanding into still earthworm-free forest ecosystems due to continuous spread and increasing soil temperatures owing to climate change. Although earthworms are known to modify soil microbial diversity and activity, it is as yet unclear how eukaryote consumers in soil microbial food webs will be affected. Here, we investigated how earthworm invasion affects the diversity of Cercozoa, one of the most dominant protist taxa in soils. Although the composition of the native cercozoan community clearly shifted in response to earthworm invasion, the communities of the different forests showed distinct responses. We identified 39 operational taxonomic units (OTUs) exclusively indicating earthworm invasion, hinting at an earthworm-associated community of Cercozoa. In particular, Woronina pythii, a hyper-parasite of plant-parasitic Oomycota in American forests, increased strongly in the presence of invasive earthworms, indicating an influence of invasive earthworms on oomycete communities and potentially on forest health, which requires further research.
Finding a partner and having sex to produce babies is a common way to reproduce. Yet, upon closer look, we see that nature provides many ways for reproduction. What about a world without males? What first sounds impossible is the reality for many organisms that reproduce asexually, meaning without having sex. Females produce daughters that are clones of themselves, so no partner is required and males are dispensable. An Example of such all-female societies are several species of oribatid mites, which live in soils. These mites were already on earth long before the dinosaurs. Have oribatid mites always been asexual? Why do they reproduce without males? Does asexual reproduction have any advantages? Keep reading to learn about asexual reproduction and why oribatid mites are a key organism to investigate the question, “Why sex?”.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.