Sheathless focusing and separation of microparticles is an important preprocessing step in various biochemical assays in which enriched sample isolation is critical. Most of the previous microfluidic particle separation techniques have used sheath flows to achieve efficient sample focusing. The sheath flow dilutes the analyte and requires additional microchannels and accurate flow control. We demonstrated a tilted-angle traveling surface acoustic wave (taTSAW)-based sheathless focusing and separation of particles in a continuous flow. The proposed device consists of a piezoelectric substrate with a pair of interdigitated transducers (IDTs) deposited at two different angles relative to the flow direction. A Y-shaped polydimethylsiloxane (PDMS) microchannel having one inlet and two outlet ports was positioned on top of the IDTs such that the acoustic energy coupling into the fluid was maximized and wave attenuation by the PDMS walls was minimized. The two IDTs independently produced high-frequency taTSAWs, which propagated at ±30° with respect to the flow direction and imparted a direct acoustic radiation force onto the target particles. A sample mixture of 4.8 and 3.2 μm particles was focused and then separated by the actuation of the IDTs at 194 and 136 MHz frequencies, respectively, without using an additional sheath flow. The proposed taTSAW-based particle separation device offered a high purity >99% at the both outlets over a wide range of flow speeds (up to 83.3 mm/s).
On-chip droplet splitting is one of the fundamental droplet-based microfluidic unit operations to control droplet volume after production and increase operational capability, flexibility, and throughput. Various droplet splitting methods have been proposed, and among them the acoustic droplet splitting method is promising because of its label-free operation without any physical or thermal damage to droplets. Previous acoustic droplet splitting methods faced several limitations: first, they employed a cross-type acoustofluidic device that precluded multichannel droplet splitting; second, they required irreversible bonding between a piezoelectric substrate and a microfluidic chip, such that the fluidic chip was not replaceable. Here, we present a parallel-type acoustofluidic device with a disposable microfluidic chip to address the limitations of previous acoustic droplet splitting devices. In the proposed device, an acoustic field is applied in the direction opposite to the flow direction to achieve multichannel droplet splitting and steering. A disposable polydimethylsiloxane microfluidic chip is employed in the developed device, thereby removing the need for permanent bonding and improving the flexibility of the droplet microfluidic device. We experimentally demonstrated on-demand acoustic droplet bi-splitting and steering with precise control over the droplet splitting ratio, and we investigated the underlying physical mechanisms of droplet splitting and steering based on Laplace pressure and ray acoustics analyses, respectively. We also demonstrated droplet tri-splitting to prove the feasibility of multichannel droplet splitting. The proposed on-demand acoustic droplet splitting device enables on-chip droplet volume control in various droplet-based microfluidic applications.
We developed a hybrid microfluidic device that utilized acoustic waves to drive functionalized microparticles inside a continuous flow microchannel and to separate particle-conjugated target proteins from a complex fluid. The acoustofluidic device is composed of an interdigitated transducer that produces high-frequency surface acoustic waves (SAW) and a polydimethylsiloxane (PDMS) microfluidic channel. The SAW interacted with the sample fluid inside the microchannel and deflected particles from their original streamlines to achieve separation. Streptavidin-functionalized polystyrene (PS) microparticles were used to capture aptamer (single-stranded DNA) labeled at one end with a biotin molecule. The free end of the customized aptamer15 (apt15), which was attached to the microparticles via streptavidin-biotin linkage to form the PS-apt15 conjugate, was used to capture the model target protein, thrombin (th), by binding at exosite I to form the PS-apt15-th complex. We demonstrated that the PS-apt15 conjugate selectively captured thrombin molecules in a complex fluid. After the PS-apt15-th complex was formed, the sample fluid was pumped through a PDMS microchannel along with two buffer sheath flows that hydrodynamically focused the sample flow prior to SAW exposure for PS-apt15-th separation from the non-target proteins. We successfully separated thrombin from mCardinal2 and human serum using the proposed acoustofluidic device.
Precise control over droplet position within a microchannel is fundamental to droplet microfluidic applications. This article proposes acoustothermal tweezer for the control of droplet position, which is based on thermocapillary droplet migration actuated by acoustothermal heating. The proposed system comprises an acoustothermal heater, which is composed of a slanted finger interdigital transducer patterned on a piezoelectric substrate and a thin PDMS membrane, and a PDMS microchannel. In the proposed system, droplets moving in a droplet microfluidic chip experience spatiotemporally varying thermal stimuli produced by acoustothermal heating and thus migrate laterally. In comparison to previous methods for droplet sorting, the acoustothermal tweezer offers significant advantages: first, the droplet position can be manipulated in two opposite directions, which enables bidirectional droplet sorting to one of three outlets downstream; second, precise control over the droplet position as well as improved droplet lateral displacement on the order of hundreds of micrometers can be achieved in a deterministic manner, thereby enabling multichannel droplet sorting; third, the PDMS microfluidic chip is disposable and thus can be easily replaced since it is attached to the substrate by reversible bonding, which allows the acoustothermal heater to be reused. Given these advantages, the proposed droplet sorting system is a promising droplet microfluidic lab-on-a-chip platform for tunable, on-demand droplet position control.
A sessile droplet of water carrying polystyrene microparticles of different diameters was uniformly exposed to high frequency surface acoustic waves (SAWs) produced by an interdigitated transducer (IDT). We investigated the concentration behavior of the microparticles as the SAWs generated a strong acoustic streaming flow (ASF) inside the water droplet and exerted a direct acoustic radiation force (ARF) on the suspended particles, the magnitude of which depended upon the particle diameter. As a result of the ARF, the microparticles were concentrated according to their diameters at different positions inside the sessile droplet placed in the path of the SAW, right in front of the IDT. The microparticle concentration behavior changed as the sessile droplet contact angle with the substrate was varied by adding surfactant to the water or by gradually evaporating the water. The positions at which the smaller and larger microparticles were concentrated remained distinguishable, even at very different experimental conditions. The long-term exposure of the droplets to the SAWs was accompanied by the gradual evaporation of the carrier fluid, which dynamically changed the droplet contact angle as well as the concentration of particles. Complete evaporation of the fluid left behind several concentrated yet separated clusters of particles on the substrate surface. The effect of the droplet contact angle on particles' concentration behavior and consequent separation of particles has been uniquely studied in this SAW-based report.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.