Abstract. The state space explosion problem is central to automatic verification algorithms. One of the successful techniques to abate this problem is called 'partial order reduction'. It is based on the observation that in many cases the specification of concurrent programs does not depend on the order in which concurrently executed events are interleaved. In this paper we present a new version of partial order reduction that allows all of the reduction to be set up at the time of compiling the system description. Normally, partial order reduction requires developing specialized verification algorithms, which in the course of a state space search, select a subset of the possible transitions from each reached global state. In our approach, the set of atomic transitions obtained from the system description after our special compilation, already generates a smaller number of choices from each state. Thus, rather than conducting a modified search of the state space generated by the original state transition relation, our approach involves an ordinary search of the reachable state space generated by a modified state transition relation. Among the advantages of this technique over other versions of the reduction is that it can be directly implemented using existing verification tools, as it requires no change of the verification engine: the entire reduction mechanism is set up at compile time. One major application is the use of this reduction technique together with symbolic model checking and localization reduction, obtaining a combined reduction. We discuss an implementation and experimental results for SDL programs translated into COSPAN notation by applying our reduction techniques. This is part of a hardware-software co-verification project.
Abstract. If a finite state machine M does not have a distinguishing sequence, but has UIO sequences for its states, there are methods to produce a checking sequence for M . However, if M has a distinguishing sequenceD, then there are methods that make use ofD to construct checking sequences that are much shorter than the ones that would be constructed by using only the UIO sequences for M . The methods to applied when a distinguishing sequence exists, only make use of the distinguishing sequences. In this paper we show that, even if M has a distinguishing sequenceD, the UIO sequences can still be used together withD to construct shorter checking sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.