Broadband metasurface-based devices are essential and indispensable in modern wireless communication systems. This paper presents an ultra−wideband and wide incident angle reflective cross−polarization converter metasurface. The unit cell of the proposed structure is a 45° rotated anisotropic meta−sheet developed by cutting the rhombus−shaped patch from the central part of the square patch. The unit cell’s top structure and ground blocking sheet are made of copper, whereas a dielectric substrate (FR−4) is used as an intermediate spacer between them. The unit cell thickness is minimal compared to the operating wavelength (1/14λ∘, where λ∘ is the wavelength of the starting frequency of 13 GHz of the operating band). The proposed structure efficiently converts linearly polarized waves into their orthogonal component, with a polarization conversion ratio of (PCR > 90%) over a broad frequency spectrum of 13 GHz to 26 GHz. The physical origin of polarization conversion is also depicted using surface current distribution plots. An ultra−wideband and highly efficient polarization conversion (above 90%) is achieved with the help of strong electromagnetic resonance coupling between the upper and lower layer of the metasurface. This kind of ultra−wideband polarization conversion metasurface can be employed in satellite communication, radar cross−section reduction, and navigation systems.
Metasurfaces, the two-dimensional (2D) metamaterials, facilitate the implementation of abrupt phase discontinuities using an array of ultrathin and subwavelength features. These metasurfaces are considered as one of the propitious candidates for realization and development of miniaturized, surface-confined, and flat optical devices. This is because of their unprecedented capabilities to engineer the wavefronts of electromagnetic waves in reflection or transmission mode. The transmission-type metasurfaces are indispensable as the majority of optical devices operate in transmission mode. Along with other innovative applications, previous research has shown that Optical-Vortex (OV) generators based on transmission-type plasmonic metasurfaces overcome the limitations imposed by conventional OV generators. However, significant ohmic losses and the strong dispersion hampered the performance and their integration with state-of-the-art technologies. Therefore, a high contrast all-dielectric metasurface provides a compact and versatile platform to realize the OV generation. The design of this type of metasurfaces relies on the concept of Pancharatnam-Berry (PB) phase aiming to achieve a complete 2π phase control of a spin-inverted transmitted wave. Here, in this paper, we present an ultrathin, highly efficient, all-dielectric metasurface comprising nano-structured silicon on a quartz substrate. With the help of a parameter-sweep optimization, a nanoscale spatial resolution is achieved with a cross-polarized transmission efficiency as high as 95.6% at an operational wavelength of 1.55 µm. Significantly high cross-polarized transmission efficiency has been achieved due to the excitation of electric quadrupole resonances with a very high magnitude. The highly efficient control over the phase has enabled a riveting optical phenomenon. Specifically, the phase profiles of two distinct optical devices, a lens and Spiral-Phase-Plate (SPP), can be merged together, thus producing a highly Focused-Optical-Vortex (FOV) with a maximum focusing efficiency of 75.3%.
In recent years, metasurfaces have provided a tempting path to replace conventional optical components where an abrupt phase change is imposed on an incident wave using a periodic array of unit cells. Till date, highly efficient dielectric metasurfaces have been demonstrated in infrared and visible domains. However, due to the lower bandgap of typical dielectric materials, such metasurfaces present strong absorption in the ultraviolet (UV) domain, and thus, hamper their realization at shorter wavelengths. In this paper, we utilize a large bandgap dielectric material, niobium pentoxide (Nb 2 O 5 ), to construct an ultra-thin and compact transmission-type metasurface that manipulates the phase of an incident wave using an array of Nb 2 O 5 nano-cylinder. By the virtue of numerical optimization, complete 2π phase coverage along with the high transmission efficiency (around 88.5%) is achieved at 355nm. Such efficient control over the phase of the incident wave enabled us to realize the polarisation insensitive self-accelerating parabolic, reciprocal, and logarithmic Airy beams (ABs) generating metasurfaces with the efficiency of 70%, 72% and 77%, respectively. In addition to this, we also demonstrate auto focusing Airy optical vortex (AFAOV) generators where the metasurfaces are designed to combine the phase profiles of an abruptly focusing Airy (AFA) beam and that of spiral phase plate (SPP). The AFAOV is generated with efficiency of 70% (for l = 3) and 72% (for l = 5).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.