Mitochondrial diseases disrupt the process of energy generation by the mitochondria, leading to manifestations that can affect almost any organ in the body. Although various possible clinical phenotypes can result, neurological and neuromuscular affection is most frequently encountered. NARS2 encodes an enzyme responsible for the conjugation of asparagine to its cognate mitochondrial transfer ribonucleic acid (tRNA) molecule, representing an essential step necessary for effective mitochondrial protein synthesis. As such, mutations in this gene can lead to poor mitochondrial gene expression and, consequently, poor energy output resulting in disease. Pathogenic variants in NARS2 have been known to cause neurodegenerative and myopathic syndromes in combined oxidative phosphorylation deficiency 24 (COXPD24). However, nonsyndromic autosomal recessive deafness 94 (DFNB94), with which only one family is known to be affected, has also been reported concerning NARS2. Our report demonstrates the association of a new pathogenic variant in mitochondrial asparaginyl-tRNA synthetase (NARS2) with nonsyndromic sensorineural hearing loss, thus confirming biallelic mutations in NARS2 as a cause of nonsyndromic deafness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.