Variations in body weight and in the distribution of body fat are associated with feed availability, thermoregulation, and energy reserve. Ethiopia is characterized by distinct agro-ecological and human ethnic farmer diversity of ancient origin, which have impacted on the variation of its indigenous livestock. Here, we investigate autosomal genome-wide profiles of 11 Ethiopian indigenous sheep populations using the Illumina Ovine 50 K SNP BeadChip assay. Sheep from the Caribbean, Europe, Middle East, China, and western, northern and southern Africa were included to address globally, the genetic variation and history of Ethiopian populations. Population relationship and structure analysis separated Ethiopian indigenous fat-tail sheep from their North African and Middle Eastern counterparts. It indicates two main genetic backgrounds and supports two distinct genetic histories for African fat-tail sheep. Within Ethiopian sheep, our results show that the short fat-tail sheep do not represent a monophyletic group. Four genetic backgrounds are present in Ethiopian indigenous sheep but at different proportions among the fat-rump and the long fat-tail sheep from western and southern Ethiopia. The Ethiopian fat-rump sheep share a genetic background with Sudanese thin-tail sheep. Genome-wide selection signature analysis identified eight putative candidate regions spanning genes influencing growth traits and fat deposition (NPR2, HINT2, SPAG8, INSR), development of limbs and skeleton, and tail formation (ALX4, HOXB13, BMP4), embryonic development of tendons, bones and cartilages (EYA2, SULF2), regulation of body temperature (TRPM8), body weight and height variation (DIS3L2), control of lipogenesis and intracellular transport of long-chain fatty acids (FABP3), the occurrence and morphology of horns (RXFP2), and response to heat stress (DNAJC18). Our findings suggest that Ethiopian fat-tail sheep represent a uniquely admixed but distinct genepool that presents an important resource for understanding the genetic control of skeletal growth, fat metabolism and associated physiological processes.
The small East African Shorthorn Zebu (EASZ) is the main indigenous cattle across East Africa. A recent genome wide SNP analysis revealed an ancient stable African taurine x Asian zebu admixture. Here, we assess the presence of candidate signatures of positive selection in their genome, with the aim to provide qualitative insights about the corresponding selective pressures. Four hundred and twenty-five EASZ and four reference populations (Holstein-Friesian, Jersey, N’Dama and Nellore) were analysed using 46,171 SNPs covering all autosomes and the X chromosome. Following FST and two extended haplotype homozygosity-based (iHS and Rsb) analyses 24 candidate genome regions within 14 autosomes and the X chromosome were revealed, in which 18 and 4 were previously identified in tropical-adapted and commercial breeds, respectively. These regions overlap with 340 bovine QTL. They include 409 annotated genes, in which 37 were considered as candidates. These genes are involved in various biological pathways (e.g. immunity, reproduction, development and heat tolerance). Our results support that different selection pressures (e.g. environmental constraints, human selection, genome admixture constrains) have shaped the genome of EASZ. We argue that these candidate regions represent genome landmarks to be maintained in breeding programs aiming to improve sustainable livestock productivity in the tropics.
The East African Shorthorn Zebu (EASZ) cattle are ancient hybrid between Asian zebu × African taurine cattle preferred by local farmers due to their adaptability to the African environment. The genetic controls of these adaptabilities are not clearly understood yet. Here, we genotyped 92 EASZ samples from Kenya (KEASZ) with more than 770,000 SNPs and sequenced the genome of a pool of 10 KEASZ. We observe an even admixed autosomal zebu × taurine genomic structure in the population. A total of 101 and 165 candidate regions of positive selection, based on genome-wide SNP analyses (meta-SS, Rsb, iHS, and ΔAF) and pooled heterozygosity (Hp) full genome sequence analysis, are identified, in which 35 regions are shared between them. A total of 142 functional variants, one novel, have been detected within these regions, in which 30 and 26 were classified as of zebu and African taurine origins, respectively. High density genome-wide SNP analysis of zebu × taurine admixed cattle populations from Uganda and Nigeria show that 25 of these regions are shared between KEASZ and Uganda cattle, and seven regions are shared across the KEASZ, Uganda, and Nigeria cattle. The identification of common candidate regions allows us to fine map 18 regions. These regions intersect with genes and QTL associated with reproduction and environmental stress (e.g., immunity and heat stress) suggesting that the genome of the zebu × taurine admixed cattle has been uniquely selected to maximize hybrid fitness both in terms of reproduction and survivability.
Butana and Kenana are two types of zebu cattle found in Sudan. They are unique amongst African indigenous zebu cattle because of their high milk production. Aiming to understand their genome structure, we genotyped 25 individuals from each breed using the Illumina BovineHD Genotyping BeadChip. Genetic structure analysis shows that both breeds have an admixed genome composed of an even proportion of indicine (0.75 ± 0.03 in Butana, 0.76 ± 0.006 in Kenana) and taurine (0.23 ± 0.009 in Butana, 0.24 ± 0.006 in Kenana) ancestries. We also observe a proportion of 0.02 to 0.12 of European taurine ancestry in ten individuals of Butana that were sampled from cattle herds in Tamboul area suggesting local crossbreeding with exotic breeds. Signatures of selection analyses (iHS and Rsb) reveal 87 and 61 candidate positive selection regions in Butana and Kenana, respectively. These regions span genes and quantitative trait loci (QTL) associated with biological pathways that are important for adaptation to marginal environments (e.g., immunity, reproduction and heat tolerance). Trypanotolerance QTL are intersecting candidate regions in Kenana cattle indicating selection pressure acting on them, which might be associated with an unexplored level of trypanotolerance in this cattle breed. Several dairy traits QTL are overlapping the identified candidate regions in these two zebu cattle breeds. Our findings underline the potential to improve dairy production in the semi-arid pastoral areas of Africa through breeding improvement strategy of indigenous local breeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.