Investment casting is well-known for its distinguished characteristics such as manufacturing small industrial components of ferrous as well as nonferrous alloys used in aerospace, automobile, bio-medical, chemical, defense, etc. with closed tolerances at relatively low cost. These industrial components need to be defect free as well as must possess desired mechanical properties. This quality metrics (defect free castings with desired mechanical properties) is mainly driven by process parameters associated with different sub-processes of investment casting including wax pattern making, shell making, dewaxing, melting & pouring, and chemical composition of alloys. It is always challenging to identify such parameters affecting quality of investment castings. In this work, an application of Genetic Algorithm has been extended to identify critical parameters and their specific set of values affecting quality of investment castings. This technique is found be very useful in performing data analytics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.