A hallmark of heart failure is mitochondrial dysfunction leading to a bioenergetics imbalance in the myocardium. Consequently, there is much interest in targeting mitochondrial abnormalities to attenuate the pathogenesis of heart failure. This review discusses (i) how electron microscopy (EM) techniques have been fundamental for the current understanding of mitochondrial structure–function, (ii) the paradigm shift in resolutions now achievable by 3‐D EM techniques due to the introduction of direct detection devices and phase plate technology, and (iii) the application of EM for unravelling mitochondrial pathological remodelling in heart failure. We further consider the tremendous potential of multi‐scale EM techniques for the development of therapeutics, structure‐based ligand design and for delineating how a drug elicits nanostructural effects at the molecular, organelle and cellular levels. In conclusion, 3‐D EM techniques have entered a new era of structural biology and are poised to play a pivotal role in discovering new therapies targeting mitochondria for treating heart failure.
Linked Articles
This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc
Mitochondrial dysfunction is a feature of type I and type II diabetes, but there is a lack of consistency between reports and links to disease development. We aimed to investigate if mitochondrial structure–function remodelling occurs in the early stages of diabetes by employing a mouse model (GENA348) of Maturity Onset Diabetes in the Young, exhibiting hyperglycemia, but not hyperinsulinemia, with mild left ventricular dysfunction. Employing 3-D electron microscopy (SBF-SEM) we determined that compared to wild-type, WT, the GENA348 subsarcolemma mitochondria (SSM) are ~ 2-fold larger, consistent with up-regulation of fusion proteins Mfn1, Mfn2 and Opa1. Further, in comparison, GENA348 mitochondria are more irregular in shape, have more tubular projections with SSM projections being longer and wider. Mitochondrial density is also increased in the GENA348 myocardium consistent with up-regulation of PGC1-α and stalled mitophagy (down-regulation of PINK1, Parkin and Miro1). GENA348 mitochondria have more irregular cristae arrangements but cristae dimensions and density are similar to WT. GENA348 Complex activity (I, II, IV, V) activity is decreased but the OCR is increased, potentially linked to a shift towards fatty acid oxidation due to impaired glycolysis. These novel data reveal that dysregulated mitochondrial morphology, dynamics and function develop in the early stages of diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.