This paper examines the accessibility of urban green spaces within the Syrian city of Aleppo before the civil war using an environmental justice approach by indicating the current state of the parameters proximity and quantity in relation to the socioeconomic status of the inhabitants. Therefore, we conducted the average nearest neighbour analysis, facilities over and under coverage analysis, network analysis and a one-way analysis of variance (ANOVA) test followed by a post-hoc Tukey honestly significant difference (HSD) test. The findings clearly indicate that the spatial pattern of the distribution of public parks facilities was significantly clustered (p-value < 0.0001), with a z-score of −16.4. Several neighbourhoods within the western and central parts of the city were identified to have a higher density of facilities, while the majority of the neighbourhoods located in the marginal parts in eastern Aleppo (low income) lack access to urban green spaces. The hierarchy-wise analysis reveals a strong deficit of urban green spaces at lower hierarchies, for example pocket parks and neighbourhood parks, while access to quarter parks and district parks is high. The urban green spaces at higher hierarchies are located in high and middle socioeconomic status areas. Regarding social segregation in park distribution and their accessibility, the data showed that high income neighbourhoods enjoy a significantly higher percentage of park facilities. The approach presented in this paper offers a generic method for the future development of public green spaces for balanced and sustainable planning.
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
Due to armed conflicts, the sudden changes in land cover are among the most drastic and recurring shocks on an international scale, and thus, have become a major source of threat to soil and water conservation. Throughout this analysis, the impact of land cover change on spatio-temporal variations of soil erosion from 2009/2010 to 2018/2019 was investigated using the Revised Universal Soil Loss Equation (RUSLE) model. The goal was to identify the characteristics and variations of soil erosion under armed conflicts in the basin of the Northern Al-Kabeer river in Syria. The soil erosion rate is 4 t ha−1 year−1 with a standard deviation of 6.4 t ha−1 year−1. In addition, the spatial distribution of erosion classes was estimated. Only about 10.1% of the basin is subject to a tolerable soil erosion rate and 79.9% of the study area experienced erosion at different levels. The soil erosion area of regions with no changes was 10%. The results revealed an increase in soil erosion until 2013/2014 and a decrease during the period from 20013/2014 to 2018/2019. This increase is a result of forest fires under armed conflict, particularly toward the steeper slopes. Coniferous forest as well as transitional woodland and scrub are the dominant land cover types in the upper part of the basin, for which the average post-fire soil loss rates (caused by factor C) were 200% to 800% higher than in the pre-fire situation. In the period from 2013/2014 to 2019/2020, soil erosion was mitigated due to a ceasefire that was agreed upon after 2016, resulting in decreased human pressures on soils in contested areas. By comparing 2009/2010 (before war) with 2018/2019 (at the end of the war stage), it can be concluded that the change in C factors slowed down the deterioration trend of soil erosion and reduced the average soil erosion rate in more than half of the basin by about 10–75%. The area concerned is located in the western part of the basin and is relatively far from the centers of armed conflicts. In contrast, the areas with increased soil erosion by about 60–400% are situated in the northeast and east, with shorter distances to armed conflict centers. These findings can be explained by forest fires, after which the burned forests were turned into agricultural land or refugee camps and road areas. Understanding the complex biophysical and socio-economic interactions of exposure to land loss is a key to guarantee regional environmental protection and to conserve the ecological quality of soil and forest systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.