New Pb(II), Mn(II), Hg(II), and Zn(II) complexes, derived from 4-(4-chlorophenyl)-1-(2-(phenylamino)acetyl)thiosemicarbazone, were synthesized. The compounds with general formulas, [Pb(H2L)2(OAc)2]ETOH.H2O, [Mn(H2L)(HL)]Cl, [Hg2(H2L)(OH)SO4], and [Zn(H2L)(HL)]Cl, were characterized by physicochemical and theoretical studies. X-ray diffraction studies showed a decrease in the crystalline size of compounds that were exposed to gamma irradiation (γ-irradiation). Thermal studies of the synthesized complexes showed thermal stability of the Mn(II) and Pb(II) complexes after γ-irradiation compared to those before γ–irradiation, while no changes in the Zn(II) and Hg(II) complexes were observed. The optimized geometric structures of the ligand and metal complexes are discussed regarding density functional theory calculations (DFT). The antimicrobial activities of the ligand and metal complexes against several bacterial and fungal stains were screened before and after irradiation. The Hg(II) complex has shown excellent antibacterial activity before and after γ-irradiation. In vitro cytotoxicity screening of the ligand and the Mn(II) and Zn(II) complexes before and after γ-irradiation disclosed that both the ligand and Mn(II) complex exhibited higher activity against human liver (Hep-G2) than Zn(II). Molecular docking was performed on the active site of MK-2 and showed good results.
A new series of Pd (II), Cd (II), and Cu(I) complexes with ((Z)‐2‐(phenylamino)‐N′‐(thiophen‐2‐ylmethylene)acetohydrazide)(H2LB) has been prepared. FT‐IR, 1H‐NMR, electronic spectra, Powder X‐ray, thermal behavior, theoretical methods and DNA interaction of ligand and of Pd (II) and Cu(I) complexes before and after γ‐irradiation are studied. The 1H NMR spectrum of the ligand after γ‐irradiation shows the signals appear at the same position or slightly shift, but the intensity of the bands after γ‐irradiation is higher than before irradiated. X‐ray diffraction (XRD) studies exhibited the samples in nanorange, the crystallite size is 1.94, 4.81 nm for both unirradiated (B1 and B3) and 2.93, 4.72 nm for irradiated (A1 and A3). The thermal stability of the complexes after γ‐irradiation increase than before γ‐irradiation. The possible structures of the metal complexes have been computed using the molecular mechanic calculations UFF using quantum chemical software by Gaussian 09 W program. The calculations are performed with DFT/B3LYP/LANL2DZ to obtain the optimized molecular geometry. Some important quantum chemical descriptors of the metal complexes were calculated such as HOMO, LUMO, and energy gap. Metal complexes before and after irradiation in the absence and presence of increasing amounts of CT‐DNA exhibit that the absorption intensities decrease with increasing the concentration of DNA.
New 1,3,4-thiadiazole thioglycosides linked to substituted arylidine systems were synthesized via glycosylation of the prepared 1,3,4-thiadiazole thiol compounds. Click strategy was also used for the synthesis of new 1,3,4-thiadiazole and 1,2,3-triazole hybrid glycosides by reaction of the acetylenic derivatives with different glycosyl azids followed by deacetylation process. The cytotoxic activities of the prepared compounds were studied against HCT-116 (human colorectal carcinoma) and MCF-7 (human breast adenocarcinoma) cell lines using the MTT assay. The results showed that the key thiadiazolethione compounds 2 and 3, the triazole glycosides linked to p-methoxyarylidine derivatives 14 and 15 in addition to the free hydroxyl glycoside 20 were found potent in activity comparable to the reference drug doxorubicin against MCF-7 human cancer cells. The acetylenic derivative 2 and glycoside 20 were also found highly active against HCT-116 cell lines.
The threats to the life and production of crops are exacerbated by climate change and the misuse of chemical pesticides. This study was designed to evaluate the effectiveness of biosynthesized silica nanoparticles (SiO2-NPs) as an alternative to pesticides against early blight disease of eggplant. Antifungal activity, disease index, photosynthetic pigments, osmolytes, oxidative stress, antioxidant enzymes activities were tested for potential tolerance of eggplant infected with Alternaria solani. Silica nanoparticles were successfully biosynthesized using Aspergillus niger through green and ecofriendly method. Results revealed that SiO2-NPs exhibited promising antifungal activity against A. solani where MIC was 62.5 µg/mL, and inhibition growth at concentration 1000 µg/mL recorded 87.8%. The disease Index (DI) as a result of infection with A. solani reached 82.5%, and as a result, a severe decrease in stem and root length and number of leaves occurred, which led to a sharp decrease in the photosynthetic pigments. However, contents of free proline, total phenol and antioxidant enzymes activity were increased in infected plants. On the other hand, the treatment with SiO2-NPs 100 ppm led to a great reduction in the disease Index (DI) by 25% and a high protection rate by 69.69%. A clear improvement in growth characteristics and a high content of chlorophyll and total carotenoids was also observed in the plants as a result of treatment with silica nanoparticles in (healthy and infected) plants. Interestingly, the noticeable rise in the content of infected and healthy plants of proline and phenols and an increase in the activity of super oxide dismutase (SOD) and polyphenol oxidase (PPO). It could be suggested that foliar application of SiO2-NPs especially 100 ppm could be commercially used as antifungal and strong inducer of plant physiological immunity against early blight disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.