Recently, the application of nano-cutting fluids has gained much attention in the machining of nickel-based super alloys due their good lubricating/cooling properties including thermal conductivity, viscosity, and tribological characteristics. In this study, a set of turning experiments on new nickel-based alloy i.e., Inconel-800 alloy, was performed to explore the characteristics of different nano-cutting fluids (aluminum oxide (Al2O3), molybdenum disulfide (MoS2), and graphite) under minimum quantity lubrication (MQL) conditions. The performance of each nano-cutting fluid was deliberated in terms of machining characteristics such as surface roughness, cutting forces, and tool wear. Further, the data generated through experiments were statistically examined through Box Cox transformation, normal probability plots, and analysis of variance (ANOVA) tests. Then, an in-depth analysis of each process parameter was conducted through line plots and the results were compared with the existing literature. In the end, the composite desirability approach (CDA) was successfully implemented to determine the ideal machining parameters under different nano-cutting cooling conditions. The results demonstrate that the MoS2 and graphite-based nanofluids give promising results at high cutting speed values, but the overall performance of graphite-based nanofluids is better in terms of good lubrication and cooling properties. It is worth mentioning that the presence of small quantities of graphite in vegetable oil significantly improves the machining characteristics of Inconel-800 alloy as compared with the two other nanofluids.
Link to publication on Research at Birmingham portal
General rightsUnless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.• Users may freely distribute the URL that is used to identify this publication.• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.• User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain.Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.When citing, please reference the published version.
Take down policyWhile the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
The hardened tool steel AISI O1 has increased strength, hardness, and wear resistance, which affects the complexity of the machining process. AISI O1 has also been classified as difficult to cut material hence optimum cutting parameters are required for the sustainable machining of the alloy. In this work, the effect of feed peer tooth (fz), cutting speed (vc), cutting of depth (ap) on surface roughness (Ra, Rt), cutting force (Fx, Fy), cutting power (Pc), machining cost (Ci), and carbon dioxide (Ene) were investigated during the slot milling process of AISI O1 hardened steel. A regression analysis was carried out on the obtained experimental results and the induction of nonlinear mathematical equations of surface roughness, cutting force, cutting power, and machining cost with a high coefficient of determination (R2 = 90.62–98.74%) were deduced. A sustainability assessment model is obtained for optimal and stable levels of design variables when slot milling AISI O1 tool steel. Stable indicators to ensure personal health and safety of operation, P1 values were set to “1” at a cutting speed of 20 m/min or 43.3 m/min and “2” at a cutting speed of 66.7 m/min or 90 m/min. It is revealed that for eco-benign machining of AISI O1, the optimum parameters of 0.01 mm/tooth, 20 m/min, and 0.1 mm should be adopted for feed rate, cutting speed, and depth of cut respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.