Purpose
The purpose of this paper is to present an approach to compute accurately the distributions of the frictional heat generated, contact pressure and thermal stresses at any instant during the sliding period (heating phase) of the single-disc friction clutch system works in the dry condition and the complex interaction among them.
Design/methodology/approach
Numerical work was achieved using the developed elastic and thermal finite element models (axisymmetric models) to simulate the engagement of the single-disc friction clutch system.
Findings
The change of distribution of contact pressure during the sliding period (heating phase) affects significantly the magnitude and distribution of the produced thermal stress. The high local heat generated appeared in the contacting surfaces because of the non-uniformity of the distribution of contact pressure during the heating phase (sliding time) and this will dramatically increase the thermal stresses.
Originality/value
Sequentially coupled thermal-mechanical approach was developed to investigate the thermal stresses problem in automotive clutches under dry conditions. This approach is considered a promising approach to investigate the effect of material, sliding time, torque function, etc., on the thermal stresses of different types of friction clutch.
The drying process is considered an effective technique for preserving foods and agricultural products from spoilage. Moreover, the drying process lessens the products' weight, volume, and packaging, which prompts a reduction in the products' transportation costs. The drying technique with solar energy represents an ancient method, still alluring due to solar energy abundance and cost‐effectiveness. In this article, the previous manuscripts concerned with studying and analyzing indirect solar dryer systems that utilize innovative solar air heaters (SAHs) are reviewed. The results and conclusions are discussed intensively to clarify the significance of utilizing this type of drying technique. The effect of many parameters on the thermal performance and efficiency of the dryer systems has been investigated. The investigated parameters included the incident solar radiation, air flow rates, outlet solar air heater temperature, absorber plate material, moisture content of the agricultural products, and the shape and configuration of the SAH. Moreover, the manuscript outlines the drying rate mathematical models that were used to validate the experimental findings. Based on the review, it is found that solar dryer systems with modified SAHs designs rather than flat plate SAH have considerable effects on enhancing thermal performance and efficiency.
The effect of the constant and variable thermal conductivity on the temperature distribution for different materials had been carried out. A uniform heat generation was supplied to each of the selected materials. Three materials were chosen for this study (Copper, Aluminum and Iron). Analytical solution with MATLAB programming had been accomplished for the equation of temperature distribution for a solid sphere with steady state conditions. ANSYS simulation had been executed to ensure the results numerically. The results show that the effect of thermal conductivity to the temperature distribution in the case of Iron model is very significant due to the low thermal conductivity of Iron. The curvature of temperature distribution for Iron model is higher humping than the other selected materials (Aluminum and copper). The comparison between the analytical and numerical gives a very good agreement with a percentage error almost non-existent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.