Air pollution of anthropogenic origin is largely from the combustion of biomass (e.g., wood), fossil fuels (e.g., cars and trucks), incinerators, landfills, agricultural activities and tobacco smoke. Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene), metals, sulphur and nitrogen oxides, ozone and particulate matter (PM). PM0.1 (ultrafine particles (UFP)), those particles with a diameter less than 100 nm (includes nanoparticles (NP)) are considered especially dangerous to human health and may contribute significantly to the development of numerous respiratory and cardiovascular diseases such as chronic obstructive pulmonary disease (COPD) and atherosclerosis. Some of the pathogenic mechanisms through which PM0.1 may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Epigenetic mechanisms including non-coding RNA (ncRNA) may also contribute towards the development of chronic disease associated with exposure to PM0.1. This paper highlights emerging molecular concepts associated with inhalational exposure to PM0.1 and their ability to contribute to chronic respiratory and systemic disease.
E-cigarettes have a liquid that may contain flavors, solvents, and nicotine. Heating this liquid generates an aerosol that is inhaled into the lungs in a process commonly referred to as vaping. E-cigarette devices can also contain cannabis-based products including tetrahydrocannabinol (THC), the psychoactive component of cannabis (marijuana). E-cigarette use has rapidly increased among current and former smokers as well as youth who have never smoked. The long-term health effects are unknown, and emerging preclinical and clinical studies suggest that e-cigarettes may not be harmless and can cause cellular alterations analogous to traditional tobacco smoke. Here, we review the historical context and the components of e-cigarettes and discuss toxicological similarities and differences between cigarette smoke and e-cigarette aerosol, with specific reference to adverse respiratory outcomes. Finally, we outline possible clinical disorders associated with vaping on pulmonary health and the recent escalation of acute lung injuries, which led to the declaration of the vaping product use-associated lung injury (EVALI) outbreak. It is clear there is much about vaping that is not understood. Consequently, until more is known about the health effects of vaping, individual factors that need to be taken into consideration include age, current and prior use of combustible tobacco products, and whether the user has preexisting lung conditions such as asthma and chronic obstructive pulmonary disease (COPD).
Arginine-rich cell penetrating peptides are short cationic peptides able to cross biological membranes despite their peptidic character. In order to optimize their penetration properties and further elucidate their mechanisms of cellular entry, these peptides have been intensively studied for the last two decades. Although several parameters are simultaneously involved in the internalization mechanism, recent studies suggest that structural modifications influence cellular internalization. Particularly, backbone rigidification, including macrocyclization, was found to enhance proteolytic stability and cellular uptake. In the present work, we describe the synthesis of macrocyclic arginine-rich cell penetrating peptides and study their cellular uptake properties using a combination of flow cytometry and confocal microscopy. By varying ring size, site of cyclization, and stereochemistry of the arginine residues, we studied their structure-uptake relationship and showed that the mode and site of cyclization as well as the stereochemistry influence cellular uptake. This study led to the identification of a hepta-arginine macrocycle as efficient as its linear nona-arginine congener to enter cells.
A H-bond-driven, noncovalent, reversible solubilization/functionalization of multiwalled carbon nanotubes (MWCNTs) in apolar organic solvents (CHCl(3), CH(2)Cl(2), and toluene) has been accomplished through a dynamic combination of self-assembly and self-organization processes leading to the formation of supramolecular polymers, which enfold around the outer wall of the MWCNTs. To this end, a library of phenylacetylene molecular scaffolds with complementary recognition sites at their extremities has been synthesized. They exhibit triple parallel H-bonds between the NH-N-NH (DAD) functions of 2,6-di(acetylamino)pyridine and the CO-NH-CO (ADA) imidic groups of uracil derivatives. These residues are placed at 180° relative to each other (linear systems) or at 60°/120° (angular modules), in order to tune their ability of wrapping around MWCNTs. Molecular Dynamics (MD) simulations showed that the formation of the hybrid assembly MWCNT•[X•Y](n) (where X = 1a or 1b -DAD- and Y = 2, 3, or 4 -ADA-) is attributed to π-π and CH-π interactions between the graphitic walls of the carbon materials and the oligophenyleneethynylene polymer backbones along with its alkyl groups, respectively. Addition of polar or protic solvents, such as DMSO or MeOH, causes the disruption of the H-bonds with partial detachment of the polymer from the CNTs, followed by precipitation. Taking advantage of the chromophoric and luminescence properties of the molecular subunits, the solubilization/precipitation processes have been monitored by UV-vis absorption and luminescence spectroscopies. All hybrid MWCNTs-polymer materials have been also structurally characterized via thermogravimetric analysis (TGA), transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.