BackgroundSkin depigmentation is increasingly oriented toward plant extracts because of harmfulness of depigmenting active ingredients used in cosmetics and dermatology. Reconstructed human pigmented epidermis (RHPE) is the closest in vitro model to human skin and offers the possibility to test the global depigmenting effect of a plant extract. These co‐cultures of keratinocytes and melanocytes are the most advanced and newest models for testing depigmentation, and until now very few studies have been done with these cultures. We investigated the cytotoxicity and the inhibitory effect on tyrosinase and melanogenesis of four extracts from Combretum micranthum (G. Don) leaves, Anacardium occidentale (L.) fruits, Moringa oleifera (Lam.) seeds, and Adansonia digitata (L.) seeds.MethodsThe vegetal extracts were obtained by ultrasound‐assisted extraction and the vegetal oils by maceration. Anti‐tyrosinase properties of two aqueous extracts were evaluated. Then, the cytotoxicity and depigmenting effects of these plant extracts were tested in vitro with RHPE model delivered by SkinEthic®.ResultsAntityrosinase activities were found to be 84.58% and 31.02% for C. micranthum and A. occidentale, respectively. All extracts, except A. occidentale, showed to be nontoxic. C. micranthum, M. oleifera, A. digitata, and mixture of M. oleifera and A. digitata extracts have shown, for the first time, an in vitro depigmenting activity equivalent or even more important than kojic acid.ConclusionsThese natural extracts coming from Senegal botanical biodiversity could be used in cosmetic and dermatology as alternative agents to achieve skin depigmentation. Further study should be focused on the mechanism of action of these plant extracts.
Tyrosinase is an important component of the enzyme polyphenol oxidase, which upon contact with the phenolic substrates forms the pigment melanin and induces undesirable food browning. The phenolic and triterpenoid compounds that naturally occur in plants are well known as tyrosinase inhibitors. Combretum micranthum (CM) leaves, Euphorbia hirta (EH) plant, and Anacardium occidentale (AO) fruits are traditionally known to have potential anti-tyrosinase activities. The aim of this study was to optimize the ultrasound-assisted extraction of secondary metabolites from these matrices, and to evaluate in tubo the antityrosinase activity of these extracts. Efforts were also taken to profile the secondary metabolites, mainly the phenolic and triterpenoid compounds, in order to understand their probable association with tyrosinase inhibition. The optimal ultrasound-assisted extraction conditions for simultaneous extraction of phenolic, and triterpenoid compounds were determined. The aqueous fraction of these extracts showed significant antityrosinase activity, with the CM leaves exhibiting the strongest inhibitory effect (IC50 of 0.58 g·L−1). The predominant metabolic compounds from these natural extracts were putatively identified by using a high-resolution quadrupole-time of flight (QToF) LC-MS instrument. The high-resolution accurate mass-based screening resulted in identification of 88 predominant metabolites, which included dihydrodaidzein-7-O-glucuronide, micromeric acid, syringic acid, morin, quercetin-3-O-(6″-malonyl-glucoside), 4-hydroxycoumarin, dihydrocaffeic acid-3-O-glucuronide, to name some, with less than 5 ppm of mass error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.