Background Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. MethodsGBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk-outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk-outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk-outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each agesex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. Findings The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobac...
Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019.Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10-14 and 50-54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed agespecific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. FindingsThe global TFR decreased from 2•72 (95% uncertainty interval [UI] 2•66-2•79) in 2000 to 2•31 (2•17-2•46) in 2019. Global annual livebirths increased from 134•5 million (131•5-137•8) in 2000 to a peak of 139•6 million (133•0-146•9) in 2016. Global livebirths then declined to 135•3 million (127•2-144•1) in 2019. Of the 204 countries and territories included in...
Background The coronavirus disease 2019 (COVID-19) has emerged as a global health and economic security threat with staggering cumulative incidence worldwide. Given the severity of projections, hospitals across the globe are creating additional critical care surge capacity and limiting patient routine access to care for other diseases like tuberculosis (TB). The outbreak fuels panic in sub-Saharan Africa where the healthcare system is fragile in withstanding the disease. Here, we looked over the COVID-19 containment measures in Ethiopia in context from reliable sources and put forth recommendations that leverage the health system response to COVID-19 and TB. Main text Ethiopia shares a major proportion of the global burden of infectious diseases, while the patterns of COVID-19 are still at an earlier stage of the epidemiology curve. The Ethiopian government exerted tremendous efforts to curb the disease. It limited public gatherings, ordered school closures, directed high-risk civil servants to work from home, and closed borders. It suspended flights to 120 countries and restricted mass transports. It declared a five-month national state of emergency and granted a pardon for 20 402 prisoners. It officially postponed parliamentary and presidential elections. It launched the ‘PM Abiy-Jack Ma initiative’, which supports African countries with COVID-19 diagnostics and infection prevention and control commodities. It expanded its COVID-19 testing capacity to 38 countrywide laboratories. Many institutions are made available to provide clinical care and quarantine. However, the outbreak still has the potential for greater loss of life in Ethiopia if the community is unable to shape the regular behavioral and sociocultural norms that would facilitate the spread of the disease. The government needs to keep cautious that irregular migrants would fuel the disease. A robust testing capacity is needed to figure out the actual status of the disease. The pandemic has reduced TB care and research activities significantly and these need due attention. Conclusions Ethiopia took several steps to detect, manage, and control COVID-19. More efforts are needed to increase testing capacity and bring about behavioral changes in the community. The country needs to put in place alternative options to mitigate interruptions of essential healthcare services and scientific researches of significant impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.