Curcumin is a polyphenol from turmeric Curcuma longa L that has been proved to possess numerous biological and pharmaceutical activities, including anti-cancer properties. However, curcumin has only limited clinical applications due to the aqueous insolubility characteristic that reduces its biological availability. On the other hand, using nanoparticles as drug delivery system has potential as it increases solubility of hydrophobic substances such as curcumin. Furthermore, nanoparticles can protect and control release of drug. Therefore, the objective of this project is to prepare nanoparticles by polymeric encapsulating curcumin by 1-3/1-6 β-glucan extracted from Vietnamese mushrooms to increase drug delivery efficiency and biological effect. Method of the preparation is nano-precipitation. The produced curcumin-β-glucan-nanoparticles (NanoGluCur) takes spherical shape with 60–70 nm in diameter. As expected, water solubility of curcumin increases about 180 times, from 0.6 μg ml−1 to 0.11 mg ml−1. Loading capacity of NanoGluCur is 18.16%. In vitro cytotoxicity and anti-tumor promoting effects of NanoGluCur were also investigated. Results revealed that NanoGluCur is able to inhibit the growth of two human cancer cell lines Hep-G2 and LU-1 with IC50 values of 6.82 and 15.53 mg ml−1, respectively, while free curcumin expresses the activity with IC50 values of 7.41 and 18.82 mg ml−1. At the concentration of 40 mg ml−1, NanoGluCur showed anti-tumor promoting effects in reducing tumor size by 59.93% and tumor density by 40.52%, while the percentages caused by pristine curcumin were 41.36% and 29.14%, respectively. These results demonstrated dual effect of 1-3/1-6 β-glucan encapsulated curcumin nanoparticles: higher water solubility and better in vitro anti-cancer effects compared to free curcumin and 1-3/1-6 β-glucan, expectedly. This observation can potentially open a new approach in research and manufacture of functional foods from medicinal mushrooms.
Recently, because of serious global challenges including the consumption of energy and climate change, there has been an increase in interest in the environmental effect of port operations and expansion. More interestingly, a strategic tendency in seaport advancement has been to manage the seaport system using a model which balances environmental volatility and economic development demands. An energy efficient management system is regarded as being vital for meeting the strict rules aimed at reducing the environmental pollution caused by port facility activities. Moreover, the enhanced supervision of port system operating methods and technical resolutions for energy utilisation also raise significant issues. In addition, low-carbon ports, as well as green port models, are becoming increasingly popular in seafaring nations. This study comprises a comprehensive assessment of operational methods, cutting-edge technologies for sustainable generation, storage, and transformation of energy, as well as systems of smart grid management, to develop a green seaport system, obtaining optimum operational efficiency and environmental protection. It is thought that using a holistic method and adaptive management, based on a framework of sustainable and green energy, could stimulate creative thinking, consensus building, and cooperation, as well as streamline the regulatory demands associated with port energy management. Although several aspects of sustainability and green energy could increase initial expenditure, they might result in significant life cycle savings due to decreased consumption of energy and output of emissions, as well as reduced operational and maintenance expenses.
Biodiesel manufacturing from renewable feedstocks has received a lot of attention as a viable alternative to fossil fuels. The Box-Behnken design, analysis of variance (ANOVA), and the Grey Wolf Optimizer (GWO) algorithm were used in this work to optimise biodiesel production from Nahar oil. The goal was to determine the best operating parameters for maximising biodiesel yield. The Box-Behnken design is used, with four essential parameters taken into account: molar ratio, reaction duration and temperature, and catalyst weight percentage. The response surface is studied in this design, and the key factors influencing biodiesel yield are discovered. The gathered data is given to ANOVA analysis to determine the statistical significance. ANOVA analysis is performed on the acquired data to determine the statistical significance of the components and their interactions. The GWO algorithm is used to better optimise the biodiesel production process. Based on the data provided, the GWO algorithm obtains an optimised yield of 91.6484% by running the reaction for 200 minutes, using a molar ratio of 7, and a catalyst weight percentage of 1.2. As indicated by the lower boundaries, the reaction temperature ranges from 50 °C. The results show that the Box-Behnken design, ANOVA, and GWO algorithm were successfully integrated for optimising biodiesel production from Nahar oil. This method offers useful insights into process optimisation and indicates the possibilities for increasing the efficiency and sustainability of biodiesel production. Further study can broaden the use of these strategies to various biodiesel production processes and feedstocks, advancing sustainable energy technology.
Machining in a heated environment has been used in pressure machining and metal cutting. Thermal-assisted machining is a new machining method performed on conventional machine tools, CNC machines, in which the workpiece is heated before machining. Different heat sources do the thermal-assisted: electrical energy, laser beam, magnetic induction. However, there is very little research on thermal-assisted machining when milling SKD11 steel, a difficult-in-processing material but widely used in the industry. Material machinability refers to the ability of material machining that is difficult or easy. Material machinability is measured by tool life, material removal ability, shear force, cutting vibration, surface roughness. The material's machinability is directly influenced by its microscopic structure and is related to the cutting mode. This paper has highlighted the study of material machinability when thermal-assisted machining and compared to the conventional one. This study also highlights the crucial role in assessing the effect of heating on the SKD11 steel machinability. This study analyzed the technological parameters' role on the shear force, chip shrinkage, surface roughness, and shear vibrations during normal machining and SKD11 steel heating. The study results showed that the material's microstructure and the amplitude of vibration did not change under the heating process's effect with a temperature range of 200 o C -400 o C. However, the shearing force during heat processing is drastically reduced compared to conventional machining. Chip shrinkage increased by 31.7% when heated to 400 o C, while roughness decreased by 47.1%.
To cope with the depletion of fossil fuels and the threat of exhaust pollution from internal combustion engines, research finds alternative fuels. Step by step to completely replace fossil fuels that will be exhausted in the future and environmentally friendly due to internal combustion engines is an urgent and important issue. Diversify fuel sources used for internal combustion engines and environmentally friendly when using Jatropha - Diesel fuel mixture. The paper focuses on studying the ability to use biodiesel derived from Jatropha seeds with the volume ratios of 5%, 10% and 15% on experimental engines. Thereby, it will analyze and evaluate the technical features and pollution levels of engines compared to pure fuels. Experimental study assessing the effect of Jatropha - Diesel mixing ratio on the emission formation compared with emissions in Vikyno EV2600 engines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.