This paper presents a novel randomized algorithm for robust point cloud registration without correspondences. Most existing registration approaches require a set of putative correspondences obtained by extracting invariant descriptors. However, such descriptors could become unreliable in noisy and contaminated settings. In these settings, methods that directly handle input point sets are preferable. Without correspondences, however, conventional randomized techniques require a very large amount of samples in order to reach satisfactory solutions. In this paper, we propose a novel approach to address this problem. In particular, our work enables the use of randomized methods for point cloud registration without the need of putative correspondences. By considering point cloud alignment as a special instance of graph matching and employing an efficient semi-definite relaxation, we propose a novel sampling mechanism, in which the size of the sampled subsets can be larger-than-minimal. Our tight relaxation scheme enables fast rejection of the outliers in the sampled sets, resulting in high quality hypotheses. We conduct extensive experiments to demonstrate that our approach outperforms other state-of-the-art methods. Importantly, our proposed method serves as a generic framework which can be extended to problems with known correspondences 1 .
Consensus maximization is one of the most widely used robust fitting paradigms in computer vision, and the development of algorithms for consensus maximization is an active research topic. In this paper, we propose an efficient deterministic optimization algorithm for consensus maximization. Given an initial solution, our method conducts a deterministic search that forcibly increases the consensus of the initial solution. We show how each iteration of the update can be formulated as an instance of biconvex programming, which we solve efficiently using a novel biconvex optimization algorithm. In contrast to our algorithm, previous consensus improvement techniques rely on random sampling or relaxations of the objective function, which reduce their ability to significantly improve the initial consensus. In fact, on challenging instances, the previous techniques may even return a worse off solution. Comprehensive experiments show that our algorithm can consistently and greatly improve the quality of the initial solution, without substantial cost. 4
Maximum consensus estimation plays a critically important role in robust fitting problems in computer vision. Currently, the most prevalent algorithms for consensus maximization draw from the class of randomized hypothesize-and-verify algorithms, which are cheap but can usually deliver only rough approximate solutions. On the other extreme, there are exact algorithms which are exhaustive search in nature and can be costly for practical-sized inputs. This paper fills the gap between the two extremes by proposing deterministic algorithms to approximately optimize the maximum consensus criterion. Our work begins by reformulating consensus maximization with linear complementarity constraints. Then, we develop two novel algorithms: one based on non-smooth penalty method with a Frank-Wolfe style optimization scheme, the other based on the Alternating Direction Method of Multipliers (ADMM). Both algorithms solve convex subproblems to efficiently perform the optimization. We demonstrate the capability of our algorithms to greatly improve a rough initial estimate, such as those obtained using least squares or a randomized algorithm. Compared to the exact algorithms, our approach is much more practical on realistic input sizes. Further, our approach is naturally applicable to estimation problems with geometric residuals. Matlab code and demo program for our methods can be downloaded from https://goo.gl/FQcxpi.
Multi-Camera Multiple Object Tracking (MC-MOT) is a significant computer vision problem due to its emerging applicability in several real-world applications. Despite a large number of existing works, solving the data association problem in any MC-MOT pipeline is arguably one of the most challenging tasks. Developing a robust MC-MOT system, however, is still highly challenging due to many practical issues such as inconsistent lighting conditions, varying object movement patterns, or the trajectory occlusions of the objects between the cameras. To address these problems, this work, therefore, proposes a new Dynamic GraphModel with Link Prediction (DyGLIP) approach 1 to solve the data association task. Compared to existing methods, our new model offers several advantages, including better feature representations and the ability to recover from lost tracks during camera transitions. Moreover, our model works gracefully regardless of the overlapping ratios between the cameras. Experimental results show that we outperform existing MC-MOT algorithms by a large margin on several practical datasets. Notably, our model works favorably on online settings but can be extended to an incremental approach for large-scale datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.