Auto-detecting a submerged human body underwater is very challenging with the absolute necessity to a diver or a submersible. For the vision sensor, the water turbidity and limited light condition make it difficult to take clear images. For this reason, sonar sensors are mainly utilized in water. However, even though a sonar sensor can give a plausible underwater image within this limitation, the sonar image’s quality varies greatly depending on the background of the target. The readability of the sonar image is very different according to the target distance from the underwater floor or the incidence angle of the sonar sensor to the floor. The target background must be very considerable because it causes scattered and polarization noise in the sonar image. To successfully classify the sonar image with these noises, we adopted a Convolutional Neural Network (CNN) such as AlexNet and GoogleNet. In preparing the training data for this model, the data augmentation on scattering and polarization were implemented to improve the classification accuracy from the original sonar image. It could be practical to classify sonar images undersea even by training sonar images only from the simple testbed experiments. Experimental validation was performed using three different datasets of underwater sonar images from a submerged body of a dummy, resulting in a final average classification accuracy of 91.6% using GoogleNet.
Multiple object detection is challenging yet crucial in computer vision. In This study, owing to the negative effect of noise on multiple object detection, two clustering algorithms are used on both underwater sonar images and three-dimensional point cloud LiDAR data to study and improve the performance result. The outputs from using deep learning methods on both types of data are treated with K-Means clustering and density-based spatial clustering of applications with noise (DBSCAN) algorithms to remove outliers, detect and cluster meaningful data, and improve the result of multiple object detections. Results indicate the potential application of the proposed method in the fields of object detection, autonomous driving system, and so forth.
We describe the design of an image-recognition system and its performance on multi-sensor imagery.The system satisfies a list of natural requirements, which includes locality of inferences (for efficient VLSI implementation), incorporation of prior knowledge, multi-level hierarchies, and iterative improvement. Two of the most important new features are: a uniform parallel architecture for low-, mid-and high-level vision; and achievement of recognition through short-, as opposed to its long-time behavior, of a dynamical system. Robustness depends on collective effects rather than high precision of the processing elements. Th resulting network displays a balance of high speed and small size. We also indicate how this architecture is related to the Dempster-Shafer calculus for combining evidence from multiple sources, and present novel methods of learning in such networks, including one that addresses the integration of model-based and data-driven approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.